// // Copyright 2011-2012,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = boost::filesystem; struct result_t { double freq, real_corr, imag_corr, best, delta; }; typedef std::complex samp_type; /*********************************************************************** * Constants **********************************************************************/ static const double tau = 6.28318531; static const size_t wave_table_len = 65536; static const size_t num_search_steps = 5; static const double default_precision = 0.0001; static const double default_freq_step = 7.3e6; static const size_t default_fft_bin_size = 1000; static constexpr size_t MAX_NUM_TX_ERRORS = 10; /*********************************************************************** * Set standard defaults for devices **********************************************************************/ static inline void set_optimum_defaults(uhd::usrp::multi_usrp::sptr usrp) { constexpr size_t chan = 0; const auto rx_info = usrp->get_usrp_rx_info(chan); const auto tx_info = usrp->get_usrp_tx_info(chan); const std::string mb_name = rx_info["mboard_id"]; if (mb_name.find("USRP2") != std::string::npos or mb_name.find("N200") != std::string::npos or mb_name.find("N210") != std::string::npos or mb_name.find("X300") != std::string::npos or mb_name.find("X310") != std::string::npos or mb_name.find("n3xx") != std::string::npos) { usrp->set_tx_rate(12.5e6); usrp->set_rx_rate(12.5e6); } else if (mb_name.find("B100") != std::string::npos) { usrp->set_tx_rate(4e6); usrp->set_rx_rate(4e6); } else { throw std::runtime_error( std::string("self-calibration is not supported for this device: ") + mb_name); } const std::string tx_name = tx_info["tx_subdev_name"]; if (tx_name.find("WBX") == std::string::npos and tx_name.find("SBX") == std::string::npos and tx_name.find("CBX") == std::string::npos and tx_name.find("RFX") == std::string::npos and tx_name.find("UBX") == std::string::npos and tx_name.find("Rhodium") == std::string::npos) { throw std::runtime_error( std::string("self-calibration is not supported for this TX dboard :") + tx_name); } usrp->set_tx_gain(0); const std::string rx_name = rx_info["rx_subdev_name"]; if (rx_name.find("WBX") == std::string::npos and rx_name.find("SBX") == std::string::npos and rx_name.find("CBX") == std::string::npos and rx_name.find("RFX") == std::string::npos and rx_name.find("UBX") == std::string::npos and rx_name.find("Rhodium") == std::string::npos) { throw std::runtime_error( std::string("self-calibration is not supported for this RX dboard :") + rx_name); } usrp->set_rx_gain(0); } /*********************************************************************** * Retrieve d'board serial **********************************************************************/ static std::string get_serial(uhd::usrp::multi_usrp::sptr usrp, const std::string& tx_rx) { const size_t chan = 0; auto usrp_info = (tx_rx == "tx") ? usrp->get_usrp_tx_info(chan) : usrp->get_usrp_rx_info(chan); const std::string serial_key = tx_rx + "_serial"; if (!usrp_info.has_key(serial_key)) { throw uhd::runtime_error("Cannot determine daughterboard serial!"); } return usrp_info[serial_key]; } /*********************************************************************** * Check for empty serial **********************************************************************/ void check_for_empty_serial(uhd::usrp::multi_usrp::sptr usrp) { if (get_serial(usrp, "rx").empty()) { std::string error_string = "This dboard has no serial!\n\nPlease see the Calibration " "documentation for details on how to fix this."; throw std::runtime_error(error_string); } } /*********************************************************************** * Sinusoid wave table **********************************************************************/ class wave_table { public: wave_table(const double ampl) { _table.resize(wave_table_len); for (size_t i = 0; i < wave_table_len; i++) _table[i] = samp_type(std::polar(ampl, (tau * i) / wave_table_len)); } inline samp_type operator()(const size_t index) const { return _table[index % wave_table_len]; } private: std::vector _table; }; /*********************************************************************** * Compute power of a tone **********************************************************************/ static inline double compute_tone_dbrms(const std::vector& samples, const double freq) // freq is fractional { // shift the samples so the tone at freq is down at DC // and average the samples to measure the DC component samp_type average = 0; for (size_t i = 0; i < samples.size(); i++) average += samp_type(std::polar(1.0, -freq * tau * i)) * samples[i]; return 20 * std::log10(std::abs(average / float(samples.size()))); } /*********************************************************************** * Write a dat file **********************************************************************/ static inline void write_samples_to_file( const std::vector& samples, const std::string& file) { std::ofstream outfile(file.c_str(), std::ofstream::binary); outfile.write((const char*)&samples.front(), samples.size() * sizeof(samp_type)); outfile.close(); } /*********************************************************************** * Store data to file **********************************************************************/ static void store_results(const std::vector& results, const std::string& XX, // "TX" or "RX" const std::string& xx, // "tx" or "rx" const std::string& what, // Type of test, e.g. "iq", const std::string& serial) { using namespace uhd::usrp::cal; // Note: We could also load existing data and update it. auto cal_data = iq_cal::make(XX + " Frontend Calibration", serial, time(NULL)); for (size_t i = 0; i < results.size(); i++) { cal_data->set_cal_coeff(results[i].freq, {results[i].real_corr, results[i].imag_corr}, results[i].best, results[i].delta); } const std::string cal_key = xx + "_" + what; database::write_cal_data(cal_key, serial, cal_data->serialize()); } /*********************************************************************** * Data capture routine **********************************************************************/ static void capture_samples(uhd::usrp::multi_usrp::sptr usrp, uhd::rx_streamer::sptr rx_stream, std::vector& buff, const size_t nsamps_requested) { buff.resize(nsamps_requested); uhd::rx_metadata_t md; // Right after the stream is started, there will be transient data. // That transient data is discarded and only "good" samples are returned. size_t nsamps_to_discard = size_t(usrp->get_rx_rate() * 0.001); // 1ms to be discarded std::vector discard_buff(nsamps_to_discard); uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = buff.size() + nsamps_to_discard; stream_cmd.stream_now = true; usrp->issue_stream_cmd(stream_cmd); size_t num_rx_samps = 0; // Discard the transient samples. rx_stream->recv(&discard_buff.front(), discard_buff.size(), md); if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { throw std::runtime_error( std::string("Receiver error: ") + md.strerror()); } // Now capture the data we want num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md); // validate the received data if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { throw std::runtime_error( std::string("Receiver error: ") + md.strerror()); } // we can live if all the data didnt come in if (num_rx_samps > buff.size() / 2) { buff.resize(num_rx_samps); return; } if (num_rx_samps != buff.size()) throw std::runtime_error("did not get all the samples requested"); } /*********************************************************************** * Setup function **********************************************************************/ static uhd::usrp::multi_usrp::sptr setup_usrp_for_cal( std::string& args, std::string& subdev, std::string& serial) { const std::string args_with_ignore = args + ",ignore_cal_file=1,ignore-cal-file=1"; std::cout << std::endl; std::cout << "Creating the usrp device with: " << args_with_ignore << "..." << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args_with_ignore); // Configure subdev if (!subdev.empty()) { usrp->set_tx_subdev_spec(subdev); usrp->set_rx_subdev_spec(subdev); } std::cout << "Running calibration for " << usrp->get_tx_subdev_name(0); serial = get_serial(usrp, "tx"); std::cout << "Daughterboard serial: " << serial; // set the antennas to cal if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")) throw std::runtime_error( "This board does not have the CAL antenna option, cannot self-calibrate."); usrp->set_rx_antenna("CAL"); usrp->set_tx_antenna("CAL"); // fail if daughterboard has no serial check_for_empty_serial(usrp); // set optimum defaults set_optimum_defaults(usrp); return usrp; } /*********************************************************************** * Function to find optimal RX gain setting (for the current frequency) **********************************************************************/ UHD_INLINE void set_optimal_rx_gain(uhd::usrp::multi_usrp::sptr usrp, uhd::rx_streamer::sptr rx_stream, double wave_freq = 0.0) { const double gain_step = 3.0; const double gain_compression_threshold = gain_step * 0.5; const double actual_rx_rate = usrp->get_rx_rate(); const double actual_tx_freq = usrp->get_tx_freq(); const double actual_rx_freq = usrp->get_rx_freq(); const double bb_tone_freq = actual_tx_freq - actual_rx_freq + wave_freq; const size_t nsamps = size_t(actual_rx_rate / default_fft_bin_size); std::vector buff(nsamps); uhd::gain_range_t rx_gain_range = usrp->get_rx_gain_range(); double rx_gain = rx_gain_range.start() + gain_step; double curr_dbrms = 0.0; double prev_dbrms = 0.0; double delta = 0.0; // No sense in setting the gain where this is no gain range if (rx_gain_range.stop() - rx_gain_range.start() < gain_step) return; // The algorithm below cycles through the RX gain range // looking for the point where the signal begins to get // clipped and the gain begins to be compressed. It does // this by looking for the gain setting where the increase // in the tone is less than the gain step by more than the // gain compression threshold (curr - prev < gain - threshold). // Initialize prev_dbrms value usrp->set_rx_gain(rx_gain); capture_samples(usrp, rx_stream, buff, nsamps); prev_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate); rx_gain += gain_step; // Find RX gain where signal begins to clip while (rx_gain <= rx_gain_range.stop()) { usrp->set_rx_gain(rx_gain); capture_samples(usrp, rx_stream, buff, nsamps); curr_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate); delta = curr_dbrms - prev_dbrms; // check if the gain is compressed beyone the threshold if (delta < gain_step - gain_compression_threshold) break; // if so, we are done prev_dbrms = curr_dbrms; rx_gain += gain_step; } // The rx_gain value at this point is the gain setting where clipping // occurs or the gain setting that is just beyond the gain range. // The gain is reduced by 2 steps to make sure it is within the range and // under the point where it is clipped with enough room to make adjustments. rx_gain -= 2 * gain_step; // Make sure the gain is within the range. rx_gain = rx_gain_range.clip(rx_gain); // Finally, set the gain. usrp->set_rx_gain(rx_gain); } /*! Returns true if any error on the TX stream has occurred */ bool has_tx_error(uhd::tx_streamer::sptr tx_stream) { uhd::async_metadata_t async_md; if (!tx_stream->recv_async_msg(async_md, 0.0)) { return false; } return async_md.event_code & (0 // Any of these errors are considered a problematic TX error: | uhd::async_metadata_t::EVENT_CODE_UNDERFLOW | uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR | uhd::async_metadata_t::EVENT_CODE_TIME_ERROR | uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET | uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST); } void wait_for_lo_lock(uhd::usrp::multi_usrp::sptr usrp) { std::this_thread::sleep_for(std::chrono::milliseconds(50)); const auto timeout = std::chrono::steady_clock::now() + std::chrono::milliseconds(100); while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool()) { if (std::chrono::steady_clock::now() > timeout) { throw std::runtime_error("timed out waiting for TX and/or RX LO to lock"); } } }