//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace fs = boost::filesystem;
struct result_t{double freq, real_corr, imag_corr, best, delta;};
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 6.28318531;
static const double alpha = 0.0001; //very tight iir filter
static const size_t wave_table_len = 8192;
static const size_t num_search_steps = 5;
static const size_t num_search_iters = 7;
static const size_t skip_initial_samps = 20;
static const double default_freq_step = 13.7e3;
static const size_t default_num_samps = 10000;
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
static inline std::vector > gen_table(void){
std::vector > wave_table(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++){
wave_table[i] = std::polar(1.0, (tau*i)/wave_table_len);
}
return wave_table;
}
static inline std::complex wave_table_lookup(const size_t index){
static const std::vector > wave_table = gen_table();
return wave_table[index % wave_table_len];
}
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(
const std::vector > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
std::vector > shifted(samples.size() - skip_initial_samps);
for (size_t i = 0; i < shifted.size(); i++){
shifted[i] = std::complex(samples[i+skip_initial_samps]) * std::polar(1.0, -freq*tau*i);
}
//filter the samples with a narrow low pass
std::complex iir_output = 0, iir_last = 0;
double output = 0;
for (size_t i = 0; i < shifted.size(); i++){
iir_output = alpha * shifted[i] + (1-alpha)*iir_last;
iir_last = iir_output;
output += std::abs(iir_output);
}
return 20*std::log10(output/shifted.size());
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector > &samples, const std::string &file
){
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size()*sizeof(std::complex));
outfile.close();
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(
uhd::usrp::multi_usrp::sptr usrp,
const std::vector &results,
const std::string &XX,
const std::string &xx,
const std::string &what
){
//extract eeprom serial
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get();
if (db_eeprom.serial.empty()) throw std::runtime_error(XX + " dboard has empty serial!");
//make the calibration file path
fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / "cal";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / str(boost::format("%s_%s_cal_v0.1_%s.csv") % xx % what % db_eeprom.serial);
if (fs::exists(cal_data_path)){
fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL)));
}
//fill the calibration file
std::ofstream cal_data(cal_data_path.string().c_str());
cal_data << boost::format("name, %s Frontend Calibration\n") % XX;
cal_data << boost::format("serial, %s\n") % db_eeprom.serial;
cal_data << boost::format("timestamp, %d\n") % time(NULL);
cal_data << boost::format("version, 0, 1\n");
cal_data << boost::format("DATA STARTS HERE\n");
cal_data << "lo_frequency, correction_real, correction_imag, measured, delta\n";
for (size_t i = 0; i < results.size(); i++){
cal_data
<< results[i].freq << ", "
<< results[i].real_corr << ", "
<< results[i].imag_corr << ", "
<< results[i].best << ", "
<< results[i].delta << "\n"
;
}
std::cout << "wrote cal data to " << cal_data_path << std::endl;
}