// // Copyright 2010-2011,2015-2016 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include //for split #include #include #include #include #include #include #include namespace po = boost::program_options; using namespace uhd; static std::string make_border(const std::string& text) { std::stringstream ss; ss << boost::format(" _____________________________________________________") << std::endl; ss << boost::format(" /") << std::endl; std::vector lines; boost::split(lines, text, boost::is_any_of("\n")); while (lines.back().empty()) lines.pop_back(); // strip trailing newlines if (lines.size()) lines[0] = " " + lines[0]; // indent the title line for (const std::string& line : lines) { ss << boost::format("| %s") % line << std::endl; } // ss << boost::format(" \\_____________________________________________________") << // std::endl; return ss.str(); } static std::string get_dsp_pp_string( const std::string& type, property_tree::sptr tree, const fs_path& path) { std::stringstream ss; ss << boost::format("%s DSP: %s") % type % path.leaf() << std::endl; ss << std::endl; meta_range_t freq_range = tree->access(path / "freq/range").get(); ss << boost::format("Freq range: %.3f to %.3f MHz") % (freq_range.start() / 1e6) % (freq_range.stop() / 1e6) << std::endl; ; return ss.str(); } static std::string prop_names_to_pp_string(const std::vector& prop_names) { std::stringstream ss; size_t count = 0; for (const std::string& prop_name : prop_names) { ss << ((count++) ? ", " : "") << prop_name; } return ss.str(); } static std::string get_frontend_pp_string( const std::string& type, property_tree::sptr tree, const fs_path& path) { std::stringstream ss; ss << boost::format("%s Frontend: %s") % type % path.leaf() << std::endl; // ss << std::endl; ss << boost::format("Name: %s") % (tree->access(path / "name").get()) << std::endl; ss << boost::format("Antennas: %s") % prop_names_to_pp_string( tree->access>(path / "antenna/options") .get()) << std::endl; if (tree->exists(path / "sensors")) { ss << boost::format("Sensors: %s") % prop_names_to_pp_string(tree->list(path / "sensors")) << std::endl; } meta_range_t freq_range = tree->access(path / "freq/range").get(); ss << boost::format("Freq range: %.3f to %.3f MHz") % (freq_range.start() / 1e6) % (freq_range.stop() / 1e6) << std::endl; std::vector gain_names = tree->list(path / "gains"); if (gain_names.size() == 0) ss << "Gain Elements: None" << std::endl; for (const std::string& name : gain_names) { meta_range_t gain_range = tree->access(path / "gains" / name / "range").get(); ss << boost::format("Gain range %s: %.1f to %.1f step %.1f dB") % name % gain_range.start() % gain_range.stop() % gain_range.step() << std::endl; } if (tree->exists(path / "bandwidth" / "range")) { meta_range_t bw_range = tree->access(path / "bandwidth" / "range").get(); ss << boost::format("Bandwidth range: %.1f to %.1f step %.1f Hz") % bw_range.start() % bw_range.stop() % bw_range.step() << std::endl; } ss << boost::format("Connection Type: %s") % (tree->access(path / "connection").get()) << std::endl; ss << boost::format("Uses LO offset: %s") % ((tree->exists(path / "use_lo_offset") and tree->access(path / "use_lo_offset").get()) ? "Yes" : "No") << std::endl; return ss.str(); } static std::string get_codec_pp_string( const std::string& type, property_tree::sptr tree, const fs_path& path) { std::stringstream ss; if (tree->exists(path / "name")) { ss << boost::format("%s Codec: %s") % type % path.leaf() << std::endl; ss << boost::format("Name: %s") % (tree->access(path / "name").get()) << std::endl; std::vector gain_names = tree->list(path / "gains"); if (gain_names.size() == 0) ss << "Gain Elements: None" << std::endl; for (const std::string& name : gain_names) { meta_range_t gain_range = tree->access(path / "gains" / name / "range").get(); ss << boost::format("Gain range %s: %.1f to %.1f step %.1f dB") % name % gain_range.start() % gain_range.stop() % gain_range.step() << std::endl; } } return ss.str(); } static std::string get_dboard_pp_string( const std::string& type, property_tree::sptr tree, const fs_path& path) { std::stringstream ss; ss << boost::format("%s Dboard: %s") % type % path.leaf() << std::endl; // ss << std::endl; const std::string prefix = (type == "RX") ? "rx" : "tx"; if (tree->exists(path / (prefix + "_eeprom"))) { usrp::dboard_eeprom_t db_eeprom = tree->access(path / (prefix + "_eeprom")).get(); if (db_eeprom.id != usrp::dboard_id_t::none()) ss << boost::format("ID: %s") % db_eeprom.id.to_pp_string() << std::endl; if (not db_eeprom.serial.empty()) ss << boost::format("Serial: %s") % db_eeprom.serial << std::endl; if (type == "TX" and tree->exists(path / "gdb_eeprom")) { usrp::dboard_eeprom_t gdb_eeprom = tree->access(path / "gdb_eeprom").get(); if (gdb_eeprom.id != usrp::dboard_id_t::none()) ss << boost::format("ID: %s") % gdb_eeprom.id.to_pp_string() << std::endl; if (not gdb_eeprom.serial.empty()) ss << boost::format("Serial: %s") % gdb_eeprom.serial << std::endl; } } if (tree->exists(path / (prefix + "_frontends"))) { for (const std::string& name : tree->list(path / (prefix + "_frontends"))) { ss << make_border(get_frontend_pp_string( type, tree, path / (prefix + "_frontends") / name)); } } ss << make_border(get_codec_pp_string(type, tree, path.branch_path().branch_path() / (prefix + "_codecs") / path.leaf())); return ss.str(); } static std::string get_rfnoc_blocks_pp_string(rfnoc::rfnoc_graph::sptr graph) { std::stringstream ss; ss << "RFNoC blocks on this device:" << std::endl << std::endl; for (const std::string& name : graph->find_blocks("")) { ss << "* " << name << std::endl; } return ss.str(); } static std::string get_rfnoc_connections_pp_string(rfnoc::rfnoc_graph::sptr graph) { std::stringstream ss; ss << "Static connections on this device:" << std::endl << std::endl; for (const auto& edge : graph->enumerate_static_connections()) { ss << "* " << edge.to_string() << std::endl; } return ss.str(); } static std::string get_rfnoc_pp_string(rfnoc::rfnoc_graph::sptr graph) { std::stringstream ss; ss << make_border(get_rfnoc_blocks_pp_string(graph)); ss << make_border(get_rfnoc_connections_pp_string(graph)); return ss.str(); } static std::string get_mboard_pp_string(property_tree::sptr tree, const fs_path& path) { std::stringstream ss; ss << boost::format("Mboard: %s") % (tree->access(path / "name").get()) << std::endl; if (tree->exists(path / "eeprom")) { usrp::mboard_eeprom_t mb_eeprom = tree->access(path / "eeprom").get(); for (const std::string& key : mb_eeprom.keys()) { if (not mb_eeprom[key].empty()) ss << boost::format("%s: %s") % key % mb_eeprom[key] << std::endl; } } else { ss << "No mboard EEPROM found." << std::endl; } if (tree->exists(path / "fw_version")) { ss << "FW Version: " << tree->access(path / "fw_version").get() << std::endl; } if (tree->exists(path / "mpm_version")) { ss << "MPM Version: " << tree->access(path / "mpm_version").get() << std::endl; } if (tree->exists(path / "fpga_version")) { ss << "FPGA Version: " << tree->access(path / "fpga_version").get() << std::endl; } if (tree->exists(path / "fpga_version_hash")) { ss << "FPGA git hash: " << tree->access(path / "fpga_version_hash").get() << std::endl; } if (tree->exists(path / "xbar")) { ss << "RFNoC capable: Yes" << std::endl; } ss << std::endl; try { if (tree->exists(path / "time_source" / "options")) { const std::vector time_sources = tree->access>(path / "time_source" / "options") .get(); ss << "Time sources: " << prop_names_to_pp_string(time_sources) << std::endl; } if (tree->exists(path / "clock_source" / "options")) { const std::vector clock_sources = tree->access>(path / "clock_source" / "options") .get(); ss << "Clock sources: " << prop_names_to_pp_string(clock_sources) << std::endl; } if (tree->exists(path / "sensors")) { ss << "Sensors: " << prop_names_to_pp_string(tree->list(path / "sensors")) << std::endl; } if (tree->exists(path / "rx_dsps")) { for (const std::string& name : tree->list(path / "rx_dsps")) { ss << make_border(get_dsp_pp_string("RX", tree, path / "rx_dsps" / name)); } } if (tree->exists(path / "dboards")) { for (const std::string& name : tree->list(path / "dboards")) { ss << make_border( get_dboard_pp_string("RX", tree, path / "dboards" / name)); } if (tree->exists(path / "tx_dsps")) { for (const std::string& name : tree->list(path / "tx_dsps")) { ss << make_border( get_dsp_pp_string("TX", tree, path / "tx_dsps" / name)); } } for (const std::string& name : tree->list(path / "dboards")) { ss << make_border( get_dboard_pp_string("TX", tree, path / "dboards" / name)); } } } catch (const uhd::lookup_error& ex) { std::cout << "Exited device probe on " << ex.what() << std::endl; } return ss.str(); } static std::string get_device_pp_string(property_tree::sptr tree) { std::stringstream ss; ss << boost::format("Device: %s") % (tree->access("/name").get()) << std::endl; // ss << std::endl; for (const std::string& name : tree->list("/mboards")) { ss << make_border(get_mboard_pp_string(tree, "/mboards/" + name)); } return ss.str(); } void print_tree(const uhd::fs_path& path, uhd::property_tree::sptr tree) { std::cout << path << std::endl; for (const std::string& name : tree->list(path)) { print_tree(path / name, tree); } } namespace { uint32_t str2uint32(const std::string& str) { if (str.find("0x") == 0) { return cast::hexstr_cast(str); } return boost::lexical_cast(str); } void shell_print_help() { std::cout << "Commands:\n\n" << "poke32 $addr $data : Write $data to $addr\n" << "peek32 $addr : Read from $addr and print\n" << "help : Show this\n" << "quit : Terminate shell\n" << std::endl; } void run_interactive_regs_shell(rfnoc::noc_block_base::sptr blk_ctrl) { std::cout << "<<< Interactive Block Peeker/Poker >>>" << std::endl; std::cout << "Type 'help' to get a list of commands." << std::endl; while (true) { std::string input; std::cout << ">>> " << std::flush; std::getline(std::cin, input); std::stringstream ss(input); std::string command; ss >> command; if (command == "poke32") { std::string addr_s, data_s; uint32_t addr, data; try { ss >> addr_s >> data_s; addr = str2uint32(addr_s); data = str2uint32(data_s); } catch (std::exception&) { std::cout << "Usage: poke32 $addr $data" << std::endl; continue; } blk_ctrl->regs().poke32(addr, data); } if (command == "peek32") { std::string addr_s; uint32_t addr; try { ss >> addr_s; addr = str2uint32(addr_s); } catch (std::exception&) { std::cout << "Usage: peek32 $addr" << std::endl; continue; } std::cout << "==> " << std::hex << blk_ctrl->regs().peek32(addr) << std::dec << std::endl; } if (input == "help") { shell_print_help(); } if (input == "quit") { return; } } } } // namespace int UHD_SAFE_MAIN(int argc, char* argv[]) { po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("version", "print the version string and exit") ("args", po::value()->default_value(""), "device address args") ("tree", "specify to print a complete property tree") ("string", po::value(), "query a string value from the property tree") ("double", po::value(), "query a double precision floating point value from the property tree") ("int", po::value(), "query a integer value from the property tree") ("sensor", po::value(), "query a sensor value from the property tree") ("range", po::value(), "query a range (gain, bandwidth, frequency, ...) from the property tree") ("vector", "when querying a string, interpret that as std::vector") ("init-only", "skip all queries, only initialize device") ("interactive-reg-iface", po::value(), "RFNoC devices only: Spawn a shell to interactively peek and poke registers on RFNoC blocks") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD USRP Probe %s") % desc << std::endl; return EXIT_FAILURE; } if (vm.count("version")) { std::cout << uhd::get_version_string() << std::endl; return EXIT_SUCCESS; } device::sptr dev = device::make(vm["args"].as()); property_tree::sptr tree = dev->get_tree(); rfnoc::rfnoc_graph::sptr graph; try { graph = rfnoc::rfnoc_graph::make(vm["args"].as()); } catch (uhd::key_error&) { // pass } if (vm.count("string")) { if (vm.count("vector")) { std::vector str_vector = tree->access>(vm["string"].as()) .get(); std::cout << "("; for (const std::string& str : str_vector) { std::cout << str << ","; } std::cout << ")" << std::endl; } else { std::cout << tree->access(vm["string"].as()).get() << std::endl; } return EXIT_SUCCESS; } if (vm.count("double")) { std::cout << tree->access(vm["double"].as()).get() << std::endl; return EXIT_SUCCESS; } if (vm.count("int")) { std::cout << tree->access(vm["int"].as()).get() << std::endl; return EXIT_SUCCESS; } if (vm.count("sensor")) { std::cout << tree->access(vm["sensor"].as()) .get() .value << std::endl; return EXIT_SUCCESS; } if (vm.count("range")) { meta_range_t range = tree->access(vm["range"].as()).get(); std::cout << boost::format("%.1f:%.1f:%.1f") % range.start() % range.step() % range.stop() << std::endl; return EXIT_SUCCESS; } if (vm.count("interactive-reg-iface")) { if (!graph) { std::cout << "ERROR: --interactive-reg-iface requires an RFNoC device!" << std::endl; return EXIT_FAILURE; } const rfnoc::block_id_t block_id(vm["interactive-reg-iface"].as()); auto block_ctrl = graph->get_block(block_id); run_interactive_regs_shell(block_ctrl); return EXIT_SUCCESS; } if (vm.count("tree") != 0) { print_tree("/", tree); } else if (not vm.count("init-only")) { std::string device_pp_string = get_device_pp_string(tree); if (graph) { device_pp_string += get_rfnoc_pp_string(graph); } std::cout << make_border(device_pp_string) << std::endl; } return EXIT_SUCCESS; }