// // Copyright 2010,2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp_cal_utils.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; /*********************************************************************** * Transmit thread **********************************************************************/ static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl){ uhd::set_thread_priority_safe(); //create a transmit streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); //setup variables and allocate buffer uhd::tx_metadata_t md; md.has_time_spec = false; std::vector buff(tx_stream->get_max_num_samps()*10); //values for the wave table lookup size_t index = 0; const double tx_rate = usrp->get_tx_rate(); const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate); wave_table table(tx_wave_ampl); //fill buff and send until interrupted while (not boost::this_thread::interruption_requested()){ for (size_t i = 0; i < buff.size(); i++){ buff[i] = table(index += step); } tx_stream->send(&buff.front(), buff.size(), md); } //send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); } /*********************************************************************** * Tune RX and TX routine **********************************************************************/ static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){ //tune the transmitter with no cordic uhd::tune_request_t tx_tune_req(tx_lo_freq); tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL; tx_tune_req.dsp_freq = 0; usrp->set_tx_freq(tx_tune_req); //tune the receiver usrp->set_rx_freq(usrp->get_tx_freq() - rx_offset); //wait for the LOs to become locked boost::this_thread::sleep(boost::posix_time::milliseconds(50)); boost::system_time start = boost::get_system_time(); while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool()){ if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){ throw std::runtime_error("timed out waiting for TX and/or RX LO to lock"); } } return usrp->get_tx_freq(); } /*********************************************************************** * Main **********************************************************************/ int UHD_SAFE_MAIN(int argc, char *argv[]){ std::string args, subdev, serial; double tx_wave_freq, tx_wave_ampl, rx_offset; double freq_start, freq_stop, freq_step; size_t nsamps; po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("verbose", "enable some verbose") ("args", po::value(&args)->default_value(""), "device address args [default = \"\"]") ("subdev", po::value(&subdev), "Subdevice specification (default: first subdevice, often 'A')") ("tx_wave_freq", po::value(&tx_wave_freq)->default_value(507.123e3), "Transmit wave frequency in Hz") ("tx_wave_ampl", po::value(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts") ("rx_offset", po::value(&rx_offset)->default_value(.9344e6), "RX LO offset from the TX LO in Hz") ("freq_start", po::value(&freq_start), "Frequency start in Hz (do not specify for default)") ("freq_stop", po::value(&freq_stop), "Frequency stop in Hz (do not specify for default)") ("freq_step", po::value(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz") ("nsamps", po::value(&nsamps)->default_value(default_num_samps), "Samples per data capture") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("USRP Generate TX IQ Balance Calibration Table %s") % desc << std::endl; std::cout << "This application measures leakage between RX and TX on a daughterboard to self-calibrate.\n" << std::endl; return EXIT_FAILURE; } //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // Configure subdev if (vm.count("subdev")) { usrp->set_tx_subdev_spec(subdev); usrp->set_rx_subdev_spec(subdev); } UHD_MSG(status) << "Running calibration for " << usrp->get_tx_subdev_name(0) << std::endl; serial = get_serial(usrp, "tx"); UHD_MSG(status) << "Daughterboard serial: " << serial << std::endl; //set the antennas to cal if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){ throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate."); } usrp->set_rx_antenna("CAL"); usrp->set_tx_antenna("CAL"); //fail if daughterboard has no serial check_for_empty_serial(usrp, "TX", "tx", args); //set optimum defaults set_optimum_defaults(usrp); //create a receive streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); //create a transmitter thread boost::thread_group threads; threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl)); //re-usable buffer for samples std::vector buff; //store the results here std::vector results; if (not vm.count("freq_start")) freq_start = usrp->get_tx_freq_range().start() + 50e6; if (not vm.count("freq_stop")) freq_stop = usrp->get_tx_freq_range().stop() - 50e6; UHD_MSG(status) << boost::format("Calibration frequency range: %d MHz -> %d MHz") % (freq_start/1e6) % (freq_stop/1e6) << std::endl; for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step){ const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset); //frequency constants for this tune event const double actual_rx_rate = usrp->get_rx_rate(); const double actual_tx_freq = usrp->get_tx_freq(); const double actual_rx_freq = usrp->get_rx_freq(); const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq; const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq; //capture initial uncorrected value usrp->set_tx_iq_balance(0.0); capture_samples(usrp, rx_stream, buff, nsamps); const double initial_suppression = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate) - compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate); //bounds and results from searching std::complex best_correction; double phase_corr_start = -.3, phase_corr_stop = .3, phase_corr_step; double ampl_corr_start = -.3, ampl_corr_stop = .3, ampl_corr_step; double best_suppression = 0, best_phase_corr = 0, best_ampl_corr = 0; for (size_t i = 0; i < num_search_iters; i++){ phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps-1); ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps-1); for (double phase_corr = phase_corr_start; phase_corr <= phase_corr_stop + phase_corr_step/2; phase_corr += phase_corr_step){ for (double ampl_corr = ampl_corr_start; ampl_corr <= ampl_corr_stop + ampl_corr_step/2; ampl_corr += ampl_corr_step){ const std::complex correction(ampl_corr, phase_corr); usrp->set_tx_iq_balance(correction); //receive some samples capture_samples(usrp, rx_stream, buff, nsamps); const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate); const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate); const double suppression = tone_dbrms - imag_dbrms; if (suppression > best_suppression){ best_correction = correction; best_suppression = suppression; best_phase_corr = phase_corr; best_ampl_corr = ampl_corr; } }} //std::cout << "best_phase_corr " << best_phase_corr << std::endl; //std::cout << "best_ampl_corr " << best_ampl_corr << std::endl; //std::cout << "best_suppression " << best_suppression << std::endl; phase_corr_start = best_phase_corr - phase_corr_step; phase_corr_stop = best_phase_corr + phase_corr_step; ampl_corr_start = best_ampl_corr - ampl_corr_step; ampl_corr_stop = best_ampl_corr + ampl_corr_step; } if (best_suppression > 30){ //most likely valid, keep result result_t result; result.freq = tx_lo; result.real_corr = best_correction.real(); result.imag_corr = best_correction.imag(); result.best = best_suppression; result.delta = best_suppression - initial_suppression; results.push_back(result); if (vm.count("verbose")){ std::cout << boost::format("TX IQ: %f MHz: best suppression %f dB, corrected %f dB") % (tx_lo/1e6) % result.best % result.delta << std::endl; } else std::cout << "." << std::flush; } } std::cout << std::endl; //stop the transmitter threads.interrupt_all(); threads.join_all(); store_results(results, "TX", "tx", "iq", serial); return EXIT_SUCCESS; }