// // Copyright 2010,2012,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "usrp_cal_utils.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; /*********************************************************************** * Transmit thread **********************************************************************/ static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, uhd::tx_streamer::sptr tx_stream, const double tx_wave_ampl) { // set max TX gain usrp->set_tx_gain(usrp->get_tx_gain_range().stop()); // setup variables and allocate buffer uhd::tx_metadata_t md; md.has_time_spec = false; std::vector buff(tx_stream->get_max_num_samps() * 10); // fill buff and send until interrupted while (not boost::this_thread::interruption_requested()) { for (size_t i = 0; i < buff.size(); i++) buff[i] = float(tx_wave_ampl); tx_stream->send(&buff.front(), buff.size(), md); } // send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); } /*********************************************************************** * Tune RX and TX routine **********************************************************************/ static double tune_rx_and_tx( uhd::usrp::multi_usrp::sptr usrp, const double rx_lo_freq, const double tx_offset) { // tune the receiver with no cordic uhd::tune_request_t rx_tune_req(rx_lo_freq); rx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL; rx_tune_req.dsp_freq = 0; usrp->set_rx_freq(rx_tune_req); // tune the transmitter double tx_freq = usrp->get_rx_freq() + tx_offset; double min_fe_tx_freq = usrp->get_fe_tx_freq_range().start(); double max_fe_tx_freq = usrp->get_fe_tx_freq_range().stop(); uhd::tune_request_t tx_tune_req(tx_freq); tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL; tx_tune_req.dsp_freq = 0; if (tx_freq < min_fe_tx_freq) tx_tune_req.dsp_freq = tx_freq - min_fe_tx_freq; else if (tx_freq > max_fe_tx_freq) tx_tune_req.dsp_freq = tx_freq - max_fe_tx_freq; usrp->set_tx_freq(tx_tune_req); wait_for_lo_lock(usrp); return usrp->get_rx_freq(); } /*********************************************************************** * Main **********************************************************************/ int UHD_SAFE_MAIN(int argc, char* argv[]) { std::string args, subdev, serial; double tx_wave_ampl, tx_offset; double freq_start, freq_stop, freq_step; size_t nsamps; double precision; po::options_description desc("Allowed options"); // clang-format off desc.add_options() ("help", "help message") ("verbose", "enable some verbose") ("args", po::value(&args)->default_value(""), "Device address args [default = \"\"]") ("subdev", po::value(&subdev), "Subdevice specification (default: first subdevice, often 'A')") ("tx_wave_ampl", po::value(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude") ("tx_offset", po::value(&tx_offset)->default_value(.9344e6), "TX LO offset from the RX LO in Hz") ("freq_start", po::value(&freq_start), "Frequency start in Hz (do not specify for default)") ("freq_stop", po::value(&freq_stop), "Frequency stop in Hz (do not specify for default)") ("freq_step", po::value(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz") ("nsamps", po::value(&nsamps), "Samples per data capture") ("precision", po::value(&precision)->default_value(default_precision), "Correction precision (default=0.0001)") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("USRP Generate RX IQ Balance Calibration Table %s") % desc << std::endl; std::cout << "This application measures leakage between RX and TX on a " "transceiver daughterboard to self-calibrate.\n" "Note: Not all daughterboards support this feature. Refer to the " "UHD manual for details.\n" << std::endl; return EXIT_FAILURE; } // Create a USRP device uhd::usrp::multi_usrp::sptr usrp = setup_usrp_for_cal(args, subdev, serial); if (not vm.count("nsamps")) nsamps = size_t(usrp->get_rx_rate() / default_fft_bin_size); // create a receive streamer uhd::stream_args_t stream_args("fc32"); // complex floats uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); // create a transmit streamer uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); // create a transmitter thread boost::thread_group threads; threads.create_thread(boost::bind(&tx_thread, usrp, tx_stream, tx_wave_ampl)); // re-usable buffer for samples std::vector buff; // store the results here std::vector results; if (not vm.count("freq_start")) freq_start = usrp->get_fe_rx_freq_range().start(); if (not vm.count("freq_stop")) freq_stop = usrp->get_fe_tx_freq_range().stop(); // check start and stop frequencies if (freq_start < usrp->get_fe_rx_freq_range().start()) { std::cerr << "freq_start must be " << usrp->get_fe_rx_freq_range().start() << " or greater for this daughter board" << std::endl; return EXIT_FAILURE; } if (freq_stop > usrp->get_fe_rx_freq_range().stop()) { std::cerr << "freq_stop must be " << usrp->get_fe_rx_freq_range().stop() << " or less for this daughter board" << std::endl; return EXIT_FAILURE; } // check tx_offset double min_tx_offset = usrp->get_tx_freq_range().start() - usrp->get_fe_rx_freq_range().start(); double max_tx_offset = usrp->get_tx_freq_range().stop() - usrp->get_fe_rx_freq_range().stop(); if (tx_offset < min_tx_offset or tx_offset > max_tx_offset) { std::cerr << "tx_offset must be between " << min_tx_offset << " and " << max_tx_offset << " for this daughter board" << std::endl; return EXIT_FAILURE; } std::cout << boost::format("Calibration frequency range: %d MHz -> %d MHz") % (freq_start / 1e6) % (freq_stop / 1e6) << std::endl; size_t tx_error_count = 0; for (double rx_lo_i = freq_start; rx_lo_i <= freq_stop; rx_lo_i += freq_step) { const double rx_lo = tune_rx_and_tx(usrp, rx_lo_i, tx_offset); // frequency constants for this tune event const double actual_rx_rate = usrp->get_rx_rate(); const double actual_tx_freq = usrp->get_tx_freq(); const double actual_rx_freq = usrp->get_rx_freq(); const double bb_tone_freq = actual_tx_freq - actual_rx_freq; const double bb_imag_freq = -bb_tone_freq; // reset RX IQ balance usrp->set_rx_iq_balance(0.0); // set optimal RX gain setting for this frequency set_optimal_rx_gain(usrp, rx_stream); // capture initial uncorrected value capture_samples(usrp, rx_stream, buff, nsamps); const double initial_suppression = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate) - compute_tone_dbrms(buff, bb_imag_freq / actual_rx_rate); // bounds and results from searching double phase_corr_start = -1.0; double phase_corr_stop = 1.0; double phase_corr_step = (phase_corr_stop - phase_corr_start) / (num_search_steps + 1); double ampl_corr_start = -1.0; double ampl_corr_stop = 1.0; double ampl_corr_step = (ampl_corr_stop - ampl_corr_start) / (num_search_steps + 1); double best_suppression = 0; double best_phase_corr = 0; double best_ampl_corr = 0; while (phase_corr_step >= precision or ampl_corr_step >= precision) { for (double phase_corr = phase_corr_start + phase_corr_step; phase_corr <= phase_corr_stop - phase_corr_step; phase_corr += phase_corr_step) { for (double ampl_corr = ampl_corr_start + ampl_corr_step; ampl_corr <= ampl_corr_stop - ampl_corr_step; ampl_corr += ampl_corr_step) { const std::complex correction(ampl_corr, phase_corr); usrp->set_rx_iq_balance(correction); // receive some samples capture_samples(usrp, rx_stream, buff, nsamps); // check for TX errors in the current captured iteration if (has_tx_error(tx_stream)) { if (vm.count("verbose")) { std::cout << "[WARNING] TX error detected! " << "Repeating current iteration" << std::endl; } // Undo the correction step: ampl_corr -= ampl_corr_step; tx_error_count++; if (tx_error_count >= MAX_NUM_TX_ERRORS) { throw uhd::runtime_error( "Too many TX errors. Aborting calibration."); } continue; } const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq / actual_rx_rate); const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq / actual_rx_rate); const double suppression = tone_dbrms - imag_dbrms; if (suppression > best_suppression) { best_suppression = suppression; best_phase_corr = phase_corr; best_ampl_corr = ampl_corr; } } } phase_corr_start = best_phase_corr - phase_corr_step; phase_corr_stop = best_phase_corr + phase_corr_step; phase_corr_step = (phase_corr_stop - phase_corr_start) / (num_search_steps + 1); ampl_corr_start = best_ampl_corr - ampl_corr_step; ampl_corr_stop = best_ampl_corr + ampl_corr_step; ampl_corr_step = (ampl_corr_stop - ampl_corr_start) / (num_search_steps + 1); } if (best_suppression > initial_suppression) // keep result { result_t result; result.freq = rx_lo; result.real_corr = best_ampl_corr; result.imag_corr = best_phase_corr; result.best = best_suppression; result.delta = best_suppression - initial_suppression; results.push_back(result); if (vm.count("verbose")) std::cout << boost::format( "RX IQ: %f MHz: best suppression %f dB, corrected %f dB") % (rx_lo / 1e6) % result.best % result.delta << std::endl; else std::cout << "." << std::flush; } // Reset underrun counts, start a new counter for the next frequency tx_error_count = 0; } // end for each frequency loop std::cout << std::endl; // stop the transmitter threads.interrupt_all(); std::this_thread::sleep_for( std::chrono::milliseconds(500)); // wait for threads to finish threads.join_all(); store_results(results, "RX", "rx", "iq", serial); return EXIT_SUCCESS; }