// // Copyright 2010-2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "Responder.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include const std::string _eth_file("eths_info.txt"); // Redirect output to stderr struct cerr_redirect { cerr_redirect( std::streambuf * new_buffer ) : old( std::cerr.rdbuf( new_buffer ) ) { } ~cerr_redirect( ) { std::cerr.rdbuf( old ); } private: std::streambuf * old; }; // Catch keyboard interrupts for clean manual abort static bool s_stop_signal_called = false; static int s_signal = 0; static void sig_int_handler(int signal) { s_stop_signal_called = true; s_signal = signal; } // member of Responder to register sig int handler void Responder::register_stop_signal_handler() { std::signal(SIGINT, &sig_int_handler); } // For ncurses. Print everything in stream to screen void Responder::FLUSH_SCREEN() { printw(_ss.str().c_str()); refresh(); _ss.str(""); } // Like FLUSH_SCREEN but with new line void Responder::FLUSH_SCREEN_NL() { do { int y, x; getyx(_window, y, x); if (x > 0){ printw("\n"); y++; } FLUSH_SCREEN(); } while (0); } // Constructor Responder::Responder( Options& opt) : _opt(opt), _stats_filename(opt.stats_filename), _delay(opt.delay), _samps_per_packet(opt.samps_per_packet), _delay_step(opt.delay_step), _simulate_frequency(opt.simulate_frequency), _allow_late_bursts(opt.allow_late_bursts), _no_delay(opt.no_delay), //Initialize atributes not given by Options _num_total_samps(0), // printed on exit _overruns(0), // printed on exit _max_success(0), // < 0 --> write results to file _return_code(RETCODE_OK), _stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS), _timeout_burst_count(0), _timeout_eob_count(0), _y_delay_pos(-1), _x_delay_pos(-1), // Remember the cursor position of delay line. _last_overrun_count(0) { time( &_dbginfo.start_time ); // for debugging // Disable logging to console uhd::log::set_console_level(uhd::log::off); if (uhd::set_thread_priority_safe(_opt.rt_priority, _opt.realtime) == false) // try to set realtime scheduling { cerr << "Failed to set real-time" << endl; } _return_code = calculate_dependent_values(); // From this point on, everything is written to a ncurses window! create_ncurses_window(); print_create_usrp_msg(); try { _usrp = create_usrp_device(); } catch (const std::runtime_error& e) { print_msg(e.what() ); _return_code = RETCODE_RUNTIME_ERROR; } catch(...){ print_msg("unhandled ERROR"); _return_code = RETCODE_UNKNOWN_EXCEPTION; print_msg_and_wait("create USRP device failed!\nPress key to abort test..."); return; } // Prepare array with response burst data. _pResponse = alloc_response_buffer_with_data(_response_length); // ensure that filename is set string test_id = _usrp->get_mboard_name(); if (set_stats_filename(test_id) ) { _return_code = RETCODE_BAD_ARGS; // make sure run() does return! FLUSH_SCREEN(); if (_opt.batch_mode == false) { print_msg_and_wait("Press any key to end..."); } return; } cerr_redirect(_ss_cerr.rdbuf()); register_stop_signal_handler(); } int Responder::calculate_dependent_values() { _response_length = _opt.response_length(); _init_delay_count = (int64_t)(_opt.sample_rate * _opt.init_delay); _dc_offset_countdown = (int64_t)(_opt.sample_rate * _opt.dc_offset_delay); _level_calibration_countdown = (int64_t)_opt.level_calibration_count(); _original_simulate_duration = _simulate_duration = _opt.simulate_duration(_simulate_frequency); if (_simulate_duration > 0) { // Skip settling period and calibration _init_delay_count = 0; _dc_offset_countdown = 0; _level_calibration_countdown = 0; double highest_delay = 0.0; if (_opt.test_iterations > 0) highest_delay = max(_opt.delay_max, _opt.delay_min); else if (_no_delay == false) highest_delay = _delay; uint64_t highest_delay_samples = _opt.highest_delay_samples(highest_delay); if ((highest_delay_samples + _response_length + _opt.flush_count) > _simulate_duration) { if (_opt.adjust_simulation_rate) // This is now done DURING the simulation based on active delay { //_simulate_frequency = max_possible_rate; //_simulate_duration = (uint64_t)((double)sample_rate / _simulate_frequency); } else { cerr << boost::format("Highest delay and response duration will exceed the pulse simulation rate (%ld + %ld > %ld samples)") % highest_delay_samples % _response_length % _simulate_duration << endl; int max_possible_rate = (int) get_max_possible_frequency(highest_delay_samples, _response_length); double max_possible_delay = (double)(_simulate_duration - (_response_length + _opt.flush_count)) / (double)_opt.sample_rate; cerr << boost::format("Simulation rate must be less than %i Hz, or maximum delay must be less than %f s") % max_possible_rate % max_possible_delay << endl; if (_opt.ignore_simulation_check == 0) return RETCODE_BAD_ARGS; } } } else { boost::format fmt("Simulation frequency too high (%f Hz with sample_rate %f Msps)"); fmt % _simulate_frequency % (_opt.sample_rate/1e6); cerr << fmt << endl; return RETCODE_BAD_ARGS; } if (_opt.test_iterations > 0) // Force certain settings during test mode { _no_delay = false; _allow_late_bursts = false; _delay = _opt.delay_min; } return RETCODE_OK; // default return code } // print test title to ncurses window void Responder::print_test_title() { if (_opt.test_title.empty() == false) { std::string title(_opt.test_title); boost::replace_all(title, "%", "%%"); print_msg(title + "\n"); } } void Responder::print_usrp_status() { std::string msg; msg += (boost::format("Using device:\n%s\n") % _usrp->get_pp_string() ).str(); msg += (boost::format("Setting RX rate: %f Msps\n") % (_opt.sample_rate/1e6)).str(); msg += (boost::format("Actual RX rate: %f Msps\n") % (_usrp->get_rx_rate()/1e6) ).str(); msg += (boost::format("Setting TX rate: %f Msps\n") % (_opt.sample_rate/1e6) ).str(); msg += (boost::format("Actual TX rate: %f Msps") % (_usrp->get_tx_rate()/1e6) ).str(); print_msg(msg); print_tx_stream_status(); print_rx_stream_status(); } void Responder::print_test_parameters() { // Some status output shoud be printed here! size_t rx_max_num_samps = _rx_stream->get_max_num_samps(); size_t tx_max_num_samps = _tx_stream->get_max_num_samps(); std::string msg; msg += (boost::format("Samples per buffer: %d\n") % _opt.samps_per_buff).str(); msg += (boost::format("Maximum number of samples: RX = %d, TX = %d\n") % rx_max_num_samps % tx_max_num_samps).str(); msg += (boost::format("Response length: %ld samples (%f us)") % _response_length % (_opt.response_duration * 1e6) ).str(); if (_simulate_duration > 0) msg += (boost::format("\nSimulating pulses at %f Hz (every %ld samples)") % _simulate_frequency % _simulate_duration ).str(); if (_opt.test_iterations > 0) { msg += (boost::format("\nTest coverage: %f -> %f (%f steps)") % _opt.delay_min % _opt.delay_max % _opt.delay_step ).str(); if (_opt.end_test_after_success_count > 0) msg += (boost::format("\nTesting will end after %d successful delays") % _opt.end_test_after_success_count ).str(); } if ((_dc_offset_countdown == 0) && (_simulate_frequency == 0.0)) { msg += "\nDC offset disabled"; } print_msg(msg); } // e.g. B200 doesn't support this command. Check if possible and only set rx_dc_offset if available void Responder::set_usrp_rx_dc_offset(uhd::usrp::multi_usrp::sptr usrp, bool ena) { uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); // FIXME: Path needs to be build in a programmatic way. bool dc_offset_exists = tree->exists( uhd::fs_path("/mboards/0/rx_frontends/A/dc_offset") ); if(dc_offset_exists) { usrp->set_rx_dc_offset(ena); } } void Responder::print_create_usrp_msg() { std::string msg("Creating the USRP device"); if (_opt.device_args.empty() == false) msg.append( (boost::format(" with args \"%s\"") % _opt.device_args ).str() ); msg.append("..."); print_msg(msg); } uhd::usrp::multi_usrp::sptr Responder::create_usrp_device() { uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(_opt.device_args); usrp->set_rx_rate(_opt.sample_rate); // set the rx sample rate usrp->set_tx_rate(_opt.sample_rate); // set the tx sample rate _tx_stream = create_tx_streamer(usrp); _rx_stream = create_rx_streamer(usrp); if ((_dc_offset_countdown == 0) && (_simulate_frequency == 0.0)) set_usrp_rx_dc_offset(usrp, false); return usrp; } uhd::rx_streamer::sptr Responder::create_rx_streamer(uhd::usrp::multi_usrp::sptr usrp) { uhd::stream_args_t stream_args("fc32"); //complex floats if (_samps_per_packet > 0) { stream_args.args["spp"] = str(boost::format("%d") % _samps_per_packet); } uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); _samps_per_packet = rx_stream->get_max_num_samps(); return rx_stream; } void Responder::print_rx_stream_status() { std::string msg; msg += (boost::format("Samples per packet set to: %d\n") % _samps_per_packet).str(); msg += (boost::format("Flushing burst with %d samples") % _opt.flush_count).str(); if (_opt.skip_eob) msg += "\nSkipping End-Of-Burst"; print_msg(msg); } uhd::tx_streamer::sptr Responder::create_tx_streamer(uhd::usrp::multi_usrp::sptr usrp) { uhd::stream_args_t tx_stream_args("fc32"); //complex floats if (_allow_late_bursts == false) { tx_stream_args.args["underflow_policy"] = "next_burst"; } uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(tx_stream_args); return tx_stream; } void Responder::print_tx_stream_status() { std::string msg; if (_allow_late_bursts == false) { msg += "Underflow policy set to drop late bursts"; } else msg += "Underflow policy set to allow late bursts"; if (_opt.skip_send) msg += "\nNOT sending bursts"; else if (_opt.combine_eob) msg += "\nCombining EOB into first send"; print_msg(msg); } // handle transmit timeouts properly void Responder::handle_tx_timeout(int burst, int eob) { if(_timeout_burst_count == 0 && _timeout_eob_count == 0) time( &_dbginfo.first_send_timeout ); _timeout_burst_count += burst; _timeout_eob_count += eob; print_timeout_msg(); } void Responder::print_timeout_msg() { move(_y_delay_pos+3, _x_delay_pos); print_msg( (boost::format("Send timeout, burst_count = %ld\teob_count = %ld\n") % _timeout_burst_count % _timeout_eob_count ).str() ); } uhd::tx_metadata_t Responder::get_tx_metadata(uhd::time_spec_t rx_time, size_t n) { uhd::tx_metadata_t tx_md; tx_md.start_of_burst = true; tx_md.end_of_burst = false; if ((_opt.skip_eob == false) && (_opt.combine_eob)) { tx_md.end_of_burst = true; } if (_no_delay == false) { tx_md.has_time_spec = true; tx_md.time_spec = rx_time + uhd::time_spec_t(0, n, _opt.sample_rate) + uhd::time_spec_t(_delay); } else { tx_md.has_time_spec = false; } return tx_md; } bool Responder::send_tx_burst(uhd::time_spec_t rx_time, size_t n) { if (_opt.skip_send == true) { return false; } //send a single packet uhd::tx_metadata_t tx_md = get_tx_metadata(rx_time, n); const size_t length_to_send = _response_length + (_opt.flush_count - (tx_md.end_of_burst ? 0 : 1)); size_t num_tx_samps = _tx_stream->send(_pResponse, length_to_send, tx_md, _opt.timeout); // send pulse! if (num_tx_samps < length_to_send) { handle_tx_timeout(1, 0); } if (_opt.skip_eob == false && _opt.combine_eob == false) { tx_md.start_of_burst = false; tx_md.end_of_burst = true; tx_md.has_time_spec = false; const size_t eob_length_to_send = 1; size_t eob_num_tx_samps = _tx_stream->send(&_pResponse[length_to_send], eob_length_to_send, tx_md); // send EOB if (eob_num_tx_samps < eob_length_to_send) { handle_tx_timeout(0, 1); } } return true; } // ensure that stats_filename is not empty. bool Responder::set_stats_filename(string test_id) { if (_stats_filename.empty()) { string file_friendly_test_id(test_id); boost::replace_all(file_friendly_test_id, " ", "_"); boost::format fmt = boost::format("%slatency-stats.id_%s-rate_%i-spb_%i-spp_%i%s") % _opt.stats_filename_prefix % file_friendly_test_id % (int)_opt.sample_rate % _opt.samps_per_buff % _samps_per_packet % _opt.stats_filename_suffix; _stats_filename = str(fmt) + ".txt"; _stats_log_filename = str(fmt) + ".log"; } return check_for_existing_results(); } // Check if results file can be overwritten bool Responder::check_for_existing_results() { bool ex = false; if ((_opt.skip_if_results_exist) && (boost::filesystem::exists(_stats_filename))) { print_msg( (boost::format("Skipping invocation as results file already exists: %s") % _stats_filename).str() ); ex = true; } return ex; } // Allocate an array with a burst response float* Responder::alloc_response_buffer_with_data(uint64_t response_length) // flush_count, output_value, output_scale are const { float* pResponse = new float[(response_length + _opt.flush_count) * 2]; for (unsigned int i = 0; i < (response_length * 2); ++i) pResponse[i] = _opt.output_value * _opt.output_scale; for (unsigned int i = (response_length * 2); i < ((response_length + _opt.flush_count) * 2); ++i) pResponse[i] = 0.0f; return pResponse; } // print test parameters for current delay time void Responder::print_formatted_delay_line(const uint64_t simulate_duration, const uint64_t old_simulate_duration, const STATS& statsPrev, const double delay, const double simulate_frequency) { if(_y_delay_pos < 0 || _x_delay_pos < 0){ // make sure it gets printed to the same position everytime getyx(_window, _y_delay_pos, _x_delay_pos); } double score = 0.0; if (statsPrev.detected > 0) score = 100.0 * (double)(statsPrev.detected - statsPrev.missed) / (double)statsPrev.detected; std::string form; boost::format fmt0("Delay now: %.6f (previous delay %.6f scored %.1f%% [%ld / %ld])"); fmt0 % delay % statsPrev.delay % score % (statsPrev.detected - statsPrev.missed) % statsPrev.detected; form += fmt0.str(); if (old_simulate_duration != simulate_duration) { boost::format fmt1(" [Simulation rate now: %.1f Hz (%ld samples)]"); fmt1 % simulate_frequency % simulate_duration; form = form + fmt1.str(); } move(_y_delay_pos, _x_delay_pos); print_msg(form); } // print message and wait for user interaction void Responder::print_msg_and_wait(std::string msg) { msg = "\n" + msg; print_msg(msg); timeout(-1); getch(); timeout(0); } // print message to ncurses window void Responder::print_msg(std::string msg) { _ss << msg << endl; FLUSH_SCREEN(); } // Check if error occured during call to receive bool Responder::handle_rx_errors(uhd::rx_metadata_t::error_code_t err, size_t num_rx_samps) { // handle errors if (err == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) { std::string msg = (boost::format("Timeout while streaming (received %ld samples)") % _num_total_samps).str(); print_error_msg(msg); _return_code = RETCODE_RECEIVE_TIMEOUT; return true; } else if (err == uhd::rx_metadata_t::ERROR_CODE_BAD_PACKET) { std::string msg = (boost::format("Bad packet (received %ld samples)") % _num_total_samps).str(); print_error_msg(msg); _return_code = RETCODE_BAD_PACKET; return true; } else if ((num_rx_samps == 0) && (err == uhd::rx_metadata_t::ERROR_CODE_NONE)) { print_error_msg("Received no samples"); _return_code = RETCODE_RECEIVE_FAILED; return true; } else if (err == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) { ++_overruns; print_overrun_msg(); // update overrun info on console. } else if (err != uhd::rx_metadata_t::ERROR_CODE_NONE) { throw std::runtime_error(str(boost::format( "Unexpected error code 0x%x" ) % err)); } return false; } // print overrun status message. void Responder::print_overrun_msg() { if (_num_total_samps > (_last_overrun_count + (uint64_t)(_opt.sample_rate * 1.0))) { int y, x, y_max, x_max; getyx(_window, y, x); getmaxyx(_window, y_max, x_max); move(y_max-1, 0); print_msg( (boost::format("Overruns: %d") % _overruns).str() ); move(y, x); _last_overrun_count = _num_total_samps; } } // print error message on last line of ncurses window void Responder::print_error_msg(std::string msg) { int y, x, y_max, x_max; getyx(_window, y, x); getmaxyx(_window, y_max, x_max); move(y_max-2, 0); clrtoeol(); print_msg(msg); move(y, x); } // calculate simulate frequency double Responder::get_simulate_frequency(double delay, uint64_t response_length, uint64_t original_simulate_duration) { double simulate_frequency = _simulate_frequency; uint64_t highest_delay_samples = _opt.highest_delay_samples(delay); if ((_opt.optimize_simulation_rate) || ((highest_delay_samples + response_length + _opt.flush_count) > original_simulate_duration)) { simulate_frequency = get_max_possible_frequency(highest_delay_samples, response_length); } return simulate_frequency; } // calculate max possible simulate frequency double Responder::get_max_possible_frequency(uint64_t highest_delay_samples, uint64_t response_length) // only 2 args, others are all const! { return std::floor((double)_opt.sample_rate / (double)(highest_delay_samples + response_length + _opt.flush_count + _opt.optimize_padding)); } // Check if conditions to finish test are met. bool Responder::test_finished(size_t success_count) { if (success_count == _opt.end_test_after_success_count) { print_msg( (boost::format("\nTest complete after %d successes.") % success_count).str() ); return true; } if (((_opt.delay_min <= _opt.delay_max) && (_delay >= _opt.delay_max)) || ((_opt.delay_min > _opt.delay_max) && (_delay <= _opt.delay_max))) { print_msg("\nTest complete."); return true; } return false; } // handle keyboard input in interactive mode bool Responder::handle_interactive_control() { std::string msg = ""; int c = wgetch(_window); if (c > -1) { // UP/DOWN Keys control delay step width if ((c == KEY_DOWN) || (c == KEY_UP)) { double dMag = log10(_delay_step); int iMag = (int)floor(dMag); iMag += ((c == KEY_UP) ? 1 : -1); _delay_step = pow(10.0, iMag); msg += (boost::format("Step: %f") % _delay_step ).str(); } // LEFT/RIGHT Keys control absolute delay length if ((c == KEY_LEFT) || (c == KEY_RIGHT)) { double step = _delay_step * ((c == KEY_RIGHT) ? 1 : -1); if ((_delay + step) >= 0.0) _delay += step; msg += (boost::format("Delay: %f") % _delay).str(); } // Enable/disable fixed delay <--> best effort mode if (c == 'd') { _no_delay = !_no_delay; if (_no_delay) msg += "Delay disabled (best effort)"; else msg += (boost::format("Delay: %f") % _delay).str(); } else if (c == 'q') // exit test { return true; // signal test to stop } else if (c == 'l') // change late burst policy { _allow_late_bursts = !_allow_late_bursts; if (_allow_late_bursts) msg += "Allowing late bursts"; else msg += "Dropping late bursts"; } print_interactive_msg(msg); } return false; // signal test to continue with updated values } // print updated interactive control value void Responder::print_interactive_msg(std::string msg) { if(msg != "") { // move cursor back to beginning of line int y, x; getyx(_window, y, x); if (x > 0) { move(y, 0); clrtoeol(); } print_msg(msg); move(y, 0); } } // check if transmit burst is late bool Responder::tx_burst_is_late() { uhd::async_metadata_t async_md; if (_usrp->get_device()->recv_async_msg(async_md, 0)) { if (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_TIME_ERROR) { return true; } } return false; } void Responder::create_ncurses_window() { _window = initscr(); cbreak(); // Unbuffered key input, except for signals (cf. 'raw') noecho(); nonl(); intrflush(_window, FALSE); keypad(_window, TRUE); // Enable function keys, arrow keys, ... nodelay(_window, 0); timeout(0); } // print all fixed test parameters void Responder::print_init_test_status() { // Clear the window and write new data. erase(); refresh(); print_test_title(); print_usrp_status(); print_test_parameters(); std::string msg(""); if (_opt.test_iterations > 0) msg.append("Press Ctrl + C to abort test"); else msg.append("Press Q stop streaming"); msg.append("\n"); print_msg(msg); _y_delay_pos = -1; // reset delay display line pos. _x_delay_pos = -1; } // in interactive mode with second usrp sending bursts. calibrate trigger level float Responder::calibrate_usrp_for_test_run() { bool calibration_finished = false; float threshold = 0.0f; double ave_high = 0, ave_low = 0; int ave_high_count = 0, ave_low_count = 0; bool level_calibration_stage_2 = false; // 1. stage = rough calibration ; 2. stage = fine calibration std::vector > buff(_opt.samps_per_buff); while (not s_stop_signal_called && !calibration_finished && _return_code == RETCODE_OK) { uhd::rx_metadata_t rx_md; size_t num_rx_samps = _rx_stream->recv(&buff.front(), buff.size(), rx_md, _opt.timeout); // handle errors if(handle_rx_errors(rx_md.error_code, num_rx_samps) ) { break; } // Wait for USRP for DC offset calibration if (_dc_offset_countdown > 0) { _dc_offset_countdown -= (int64_t)num_rx_samps; if (_dc_offset_countdown > 0) continue; set_usrp_rx_dc_offset(_usrp, false); print_msg("DC offset calibration complete"); } // Wait for certain time to minimize POWER UP effects if (_init_delay_count > 0) { _init_delay_count -= (int64_t)num_rx_samps; if (_init_delay_count > 0) continue; print_msg("Initial settling period elapsed"); } //////////////////////////////////////////////////////////// // detect falling edges and calibrate detection values if (_level_calibration_countdown > 0) { if (level_calibration_stage_2 == false) { float average = 0.0f; for (size_t n = 0; n < num_rx_samps; n++) average += buff[n].real() * _opt.invert; average /= (float)num_rx_samps; if (ave_low_count == 0) { ave_low = average; ++ave_low_count; } else if (average < ave_low) { ave_low = average; ++ave_low_count; } if (ave_high_count == 0) { ave_high = average; ++ave_high_count; } else if (average > ave_high) { ave_high = average; ++ave_high_count; } } else { for (size_t n = 0; n < num_rx_samps; n++) { float f = buff[n].real() * _opt.invert; if (f >= threshold) { ave_high += f; ave_high_count++; } else { ave_low += f; ave_low_count++; } } } _level_calibration_countdown -= (int64_t)num_rx_samps; if (_level_calibration_countdown <= 0) { if (level_calibration_stage_2 == false) { level_calibration_stage_2 = true; _level_calibration_countdown = _opt.level_calibration_count(); threshold = ave_low + ((ave_high - ave_low) / 2.0); print_msg( (boost::format("Phase #1: Ave low: %.3f (#%d), ave high: %.3f (#%d), threshold: %.3f") % ave_low % ave_low_count % ave_high % ave_high_count % threshold).str() ); ave_low_count = ave_high_count = 0; ave_low = ave_high = 0.0f; continue; } else { ave_low /= (double)ave_low_count; ave_high /= (double)ave_high_count; threshold = ave_low + ((ave_high - ave_low) * _opt.trigger_level); print_msg( (boost::format("Phase #2: Ave low: %.3f (#%d), ave high: %.3f (#%d), threshold: %.3f\n") % ave_low % ave_low_count % ave_high % ave_high_count % threshold).str() ); _stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; _stream_cmd.stream_now = true; _usrp->issue_stream_cmd(_stream_cmd); double diff = std::abs(ave_high - ave_low); if (diff < _opt.pulse_detection_threshold) { _return_code = RETCODE_BAD_ARGS; print_error_msg( (boost::format("Did not detect any pulses (difference %.6f < detection threshold %.6f)") % diff % _opt.pulse_detection_threshold).str() ); break; } _stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS; _stream_cmd.stream_now = true; _usrp->issue_stream_cmd(_stream_cmd); } } else continue; } // calibration finished calibration_finished = true; } return threshold; } // try to stop USRP properly after tests void Responder::stop_usrp_stream() { try { if (_usrp) { _stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS; _stream_cmd.stream_now = true; _usrp->issue_stream_cmd(_stream_cmd); } } catch (...) { // } } // after each delay length update test parameters and print them void Responder::update_and_print_parameters(const STATS& statsPrev, const double delay) { uint64_t old_simulate_duration = _simulate_duration; _simulate_frequency = get_simulate_frequency(delay, _response_length, _original_simulate_duration); _simulate_duration = _opt.simulate_duration(_simulate_frequency); print_formatted_delay_line(_simulate_duration, old_simulate_duration, statsPrev, delay, _simulate_frequency); _timeout_burst_count = 0; _timeout_eob_count = 0; } // detect or simulate burst level. bool Responder::get_new_state(uint64_t total_samps, uint64_t simulate_duration, float val, float threshold) { bool new_state = false; if (simulate_duration > 0) // only simulated input bursts! new_state = (((total_samps) % simulate_duration) == 0); else new_state = (val >= threshold); // TODO: Just measure difference in fall return new_state; } // detect a pulse, respond to it and count number of pulses. // statsCurrent holds parameters. uint64_t Responder::detect_respond_pulse_count(STATS &statsCurrent, std::vector > &buff, uint64_t trigger_count, size_t num_rx_samps, float threshold, uhd::time_spec_t rx_time) { // buff, threshold bool input_state = false; for (size_t n = 0; n < num_rx_samps; n++) { float f = buff[n].real() * _opt.invert; bool new_state = get_new_state(_num_total_samps + n, _simulate_duration, f, threshold); if ((new_state == false) && (input_state)) // == falling_edge { trigger_count++; statsCurrent.detected++; if ((_opt.test_iterations > 0) && (_opt.skip_iterations > 0) && (statsCurrent.skipped == 0) && (_opt.skip_iterations == statsCurrent.detected)) { memset(&statsCurrent, 0x00, sizeof(STATS)); statsCurrent.delay = _delay; statsCurrent.detected = 1; statsCurrent.skipped = _opt.skip_iterations; trigger_count = 1; } if( !send_tx_burst(rx_time, n) ) { statsCurrent.missed++; } if(tx_burst_is_late() ) { statsCurrent.missed++; } } input_state = new_state; } return trigger_count; } // this is the actual "work" function. All the fun happens here void Responder::run_test(float threshold) { STATS statsCurrent; //, statsPrev; memset(&statsCurrent, 0x00, sizeof(STATS)); if (_opt.test_iterations > 0) { update_and_print_parameters(statsCurrent, _delay); statsCurrent.delay = _opt.delay_min; } /////////////////////////////////////////////////////////////////////////// uint64_t trigger_count = 0; size_t success_count = 0; uint64_t num_total_samps_test = 0; std::vector > buff(_opt.samps_per_buff); while (not s_stop_signal_called && _return_code == RETCODE_OK) { // get samples from rx stream. uhd::rx_metadata_t rx_md; size_t num_rx_samps = _rx_stream->recv(&buff.front(), buff.size(), rx_md, _opt.timeout); // handle errors if(handle_rx_errors(rx_md.error_code, num_rx_samps) ) { break; } // detect falling edges, send respond pulse and check if response could be sent in time trigger_count = detect_respond_pulse_count(statsCurrent, buff, trigger_count, num_rx_samps, threshold, rx_md.time_spec); // increase counters for single test and overall test samples count. _num_total_samps += num_rx_samps; num_total_samps_test += num_rx_samps; // control section for interactive mode if (_opt.test_iterations == 0) // == "interactive' { if(handle_interactive_control() ) break; } // control section for test mode if (_opt.test_iterations > 0) // == test mode / batch-mode { int step_return = test_step_finished(trigger_count, num_total_samps_test, statsCurrent, success_count); if(step_return == -2) // == test is finished with all desired delay steps break; else if(step_return == -1) // just continue test continue; else // test with one delay is finished { success_count = (size_t) step_return; trigger_count = 0; num_total_samps_test = 0; memset(&statsCurrent, 0x00, sizeof(STATS)); // reset current stats for next test iteration statsCurrent.delay = _delay; } } // end test mode control section }// exit outer loop after stop signal is called, test is finished or other break condition is met if (s_stop_signal_called) _return_code = RETCODE_MANUAL_ABORT; } // check if test with one specific delay is finished int Responder::test_step_finished(uint64_t trigger_count, uint64_t num_total_samps_test, STATS statsCurrent, size_t success_count) { if ( ((_opt.test_iterations_is_sample_count == false) && (trigger_count >= _opt.test_iterations)) || ((_opt.test_iterations_is_sample_count) && (num_total_samps_test > _opt.test_iterations)) ) { add_stats_to_results(statsCurrent, _delay); if (statsCurrent.missed == 0) // == NO late bursts ++success_count; else success_count = 0; if(test_finished(success_count) ) return -2; // test is completely finished _delay += _delay_step; // increase delay by one step update_and_print_parameters(statsCurrent, _delay); return success_count; // test is finished for one delay step } return -1; // == continue test } // save test results void Responder::add_stats_to_results(STATS statsCurrent, double delay) { _max_success = max(_max_success, (statsCurrent.detected - statsCurrent.missed)); // > 0 --> save results uint64_t key = (uint64_t)(delay * 1e6); _mapStats[key] = statsCurrent; } // run tests and handle errors int Responder::run() { if (_return_code != RETCODE_OK) return _return_code; if (_opt.pause) print_msg_and_wait("Press any key to begin..."); time( &_dbginfo.start_time_test ); // Put some info about the test on the console print_init_test_status(); try { //setup streaming _stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS; _stream_cmd.stream_now = true; _usrp->issue_stream_cmd(_stream_cmd); if( !_opt.batch_mode ){ float threshold = calibrate_usrp_for_test_run(); if (_return_code != RETCODE_OK) { return _return_code; } run_test(threshold); } else { run_test(); } } catch (const std::runtime_error& e) { print_msg(e.what() ); _return_code = RETCODE_RUNTIME_ERROR; } catch (...) { print_msg("Unhandled exception"); _return_code = RETCODE_UNKNOWN_EXCEPTION; } stop_usrp_stream(); time( &_dbginfo.end_time_test ); return (_return_code < 0 ? _return_code : _overruns); } /* * Following functions are intended to be used by destructor only! */ // This method should print statistics after ncurses endwin. void Responder::print_final_statistics() { cout << boost::format("Received %ld samples during test run") % _num_total_samps; if (_overruns > 0) cout << boost::format(" (%d overruns)") % _overruns; cout << endl; } // safe test results to a log file if enabled void Responder::write_log_file() { try { if(_opt.log_file){ std::map hw_info = get_hw_info(); ofstream logs(_stats_log_filename.c_str()); logs << boost::format("title=%s") % _opt.test_title << endl; logs << boost::format("device=%s") % _usrp->get_mboard_name() << endl; logs << boost::format("device_args=%s") % _opt.device_args << endl; logs << boost::format("type=%s") % hw_info["type"] << endl; if (hw_info.size() > 0) { logs << boost::format("usrp_addr=%s") % hw_info["usrp_addr"] << endl; logs << boost::format("usrp_name=%s") % hw_info["name"] << endl; logs << boost::format("serial=%s") % hw_info["serial"] << endl; logs << boost::format("host_interface=%s") % hw_info["interface"] << endl; logs << boost::format("host_addr=%s") % hw_info["host_addr"] << endl; logs << boost::format("host_mac=%s") % hw_info["mac"] << endl; logs << boost::format("host_vendor=%s (id=%s)") % hw_info["vendor"] % hw_info["vendor_id"] << endl; logs << boost::format("host_device=%s (id=%s)") % hw_info["device"] % hw_info["device_id"] << endl; } logs << boost::format("sample_rate=%f") % _opt.sample_rate << endl; logs << boost::format("samps_per_buff=%i") % _opt.samps_per_buff << endl; logs << boost::format("samps_per_packet=%i") % _samps_per_packet << endl; logs << boost::format("delay_min=%f") % _opt.delay_min << endl; logs << boost::format("delay_max=%f") % _opt.delay_max << endl; logs << boost::format("delay_step=%f") % _delay_step << endl; logs << boost::format("delay=%f") % _delay << endl; logs << boost::format("init_delay=%f") % _opt.init_delay << endl; logs << boost::format("response_duration=%f") % _opt.response_duration << endl; logs << boost::format("response_length=%ld") % _response_length << endl; logs << boost::format("timeout=%f") % _opt.timeout << endl; logs << boost::format("timeout_burst_count=%ld") % _timeout_burst_count << endl; logs << boost::format("timeout_eob_count=%f") % _timeout_eob_count << endl; logs << boost::format("allow_late_bursts=%s") % (_allow_late_bursts ? "yes" : "no") << endl; logs << boost::format("skip_eob=%s") % (_opt.skip_eob ? "yes" : "no") << endl; logs << boost::format("combine_eob=%s") % (_opt.combine_eob ? "yes" : "no") << endl; logs << boost::format("skip_send=%s") % (_opt.skip_send ? "yes" : "no") << endl; logs << boost::format("no_delay=%s") % (_no_delay ? "yes" : "no") << endl; logs << boost::format("simulate_frequency=%f") % _simulate_frequency << endl; logs << boost::format("simulate_duration=%ld") % _simulate_duration << endl; logs << boost::format("original_simulate_duration=%ld") % _original_simulate_duration << endl; logs << boost::format("realtime=%s") % (_opt.realtime ? "yes" : "no") << endl; logs << boost::format("rt_priority=%f") % _opt.rt_priority << endl; logs << boost::format("test_iterations=%ld") % _opt.test_iterations << endl; logs << boost::format("end_test_after_success_count=%i") % _opt.end_test_after_success_count << endl; logs << boost::format("skip_iterations=%i") % _opt.skip_iterations << endl; logs << boost::format("overruns=%i") % _overruns << endl; logs << boost::format("num_total_samps=%ld") % _num_total_samps << endl; logs << boost::format("return_code=%i\t(%s)") % _return_code % enum2str(_return_code) << endl; logs << endl; write_debug_info(logs); } } catch(...) { cerr << "Failed to write log file to: " << _stats_log_filename << endl; } } // write debug info to log file void Responder::write_debug_info(ofstream& logs) { logs << endl << "%% DEBUG INFO %%" << endl; logs << boost::format("dbg_time_start=%s") % get_gmtime_string(_dbginfo.start_time) << endl; logs << boost::format("dbg_time_end=%s") % get_gmtime_string(_dbginfo.end_time) << endl; logs << boost::format("dbg_time_duration=%d") % difftime( _dbginfo.end_time, _dbginfo.start_time ) << endl; logs << boost::format("dbg_time_start_test=%s") % get_gmtime_string(_dbginfo.start_time_test) << endl; logs << boost::format("dbg_time_end_test=%s") % get_gmtime_string(_dbginfo.end_time_test) << endl; logs << boost::format("dbg_time_duration_test=%d") % difftime( _dbginfo.end_time_test, _dbginfo.start_time_test ) << endl; logs << boost::format("dbg_time_first_send_timeout=%s") % get_gmtime_string(_dbginfo.first_send_timeout) << endl; } // convert a time string to desired format std::string Responder::get_gmtime_string(time_t time) { tm* ftm; ftm = gmtime( &time ); std::string strtime; strtime.append( (boost::format("%i") % (ftm->tm_year+1900) ).str() ); strtime.append( (boost::format("-%02i") % ftm->tm_mon).str() ); strtime.append( (boost::format("-%02i") % ftm->tm_mday).str() ); strtime.append( (boost::format("-%02i") % ((ftm->tm_hour)) ).str() ); strtime.append( (boost::format(":%02i") % ftm->tm_min).str() ); strtime.append( (boost::format(":%02i") % ftm->tm_sec).str() ); return strtime; } // read hardware info from file if available to include it in log file std::map Responder::get_hw_info() { std::map result; std::vector > eths = read_eth_info(); if(eths.empty()){ return result; } uhd::device_addr_t usrp_info = get_usrp_info(); std::string uaddr = get_ip_subnet_addr(usrp_info["addr"]); for(unsigned int i = 0 ; i < eths.size() ; i++ ) { if(get_ip_subnet_addr(eths[i]["addr"]) == uaddr) { result["type"] = usrp_info["type"]; result["usrp_addr"] = usrp_info["addr"]; result["name"] = usrp_info["name"]; result["serial"] = usrp_info["serial"]; result["interface"] = eths[i]["interface"]; result["host_addr"] = eths[i]["addr"]; result["mac"] = eths[i]["mac"]; result["vendor"] = eths[i]["vendor"]; result["vendor_id"] = eths[i]["vendor_id"]; result["device"] = eths[i]["device"]; result["device_id"] = eths[i]["device_id"]; break; // Use first item found. Imitate device discovery. } } return result; } // subnet used to identify used network interface std::string Responder::get_ip_subnet_addr(std::string ip) { return ip.substr(0, ip.rfind(".") + 1); } // get network interface info from file (should include all available interfaces) std::vector > Responder::read_eth_info() { const std::string eth_file(_eth_file); std::vector > eths; try { ifstream eth_info(eth_file.c_str()); if(!eth_info.is_open()){ return eths; } const int len = 256; char cline[len]; for(; !eth_info.eof() ;) { eth_info.getline(cline, len); std::string line(cline); if(line.find("## ETH Interface") != std::string::npos) { eth_info.getline(cline, len); std::string eth(cline); // cout << "interface=" << eth << endl; std::map iface; iface["interface"] = eth; eths.push_back(iface); } const std::string ipstr("\tip "); if(line.find(ipstr) != std::string::npos) { std::string ip( line.replace(line.begin(), line.begin()+ipstr.length(), "") ); // cout << "ip=" << ip << endl; eths.back()["addr"] = ip; } const std::string macstr("\tmac "); if(line.find(macstr) != std::string::npos) { std::string mac( line.replace(line.begin(), line.begin()+macstr.length(), "") ); // cout << "mac=" << mac << endl; eths.back()["mac"] = mac; } const std::string vstr("\t\tvendor "); if(line.find(vstr) != std::string::npos) { std::string vendor( line.replace(line.begin(), line.begin()+vstr.length(), "") ); std::string vid( vendor.substr(0,6) ); vendor.replace(0, 7, ""); // cout << "id=" << vid << endl; // cout << "vendor=" << vendor << endl; eths.back()["vendor"] = vendor; eths.back()["vendor_id"] = vid; } const std::string dstr("\t\tdevice "); if(line.find(dstr) != std::string::npos) { std::string device( line.replace(line.begin(), line.begin()+dstr.length(), "") ); std::string did( device.substr(0,6) ); device.replace(0, 7, ""); // cout << "id=" << did << endl; // cout << "device=" << device << endl; eths.back()["device"] = device; eths.back()["device_id"] = did; } } } catch(...) { // nothing in yet } return eths; } // get info on used USRP uhd::device_addr_t Responder::get_usrp_info() { uhd::device_addrs_t device_addrs = uhd::device::find(_opt.device_args); uhd::device_addr_t device_addr = device_addrs[0]; return device_addr; } // write statistics of test run to file void Responder::write_statistics_to_file(StatsMap mapStats) { try { ofstream results(_stats_filename.c_str()); for (StatsMap::iterator it = mapStats.begin(); it != mapStats.end(); ++it) { STATS& stats = it->second; double d = 0.0; if (stats.detected > 0) d = 1.0 - ((double)stats.missed / (double)stats.detected); cout << "\t" << setprecision(6) << stats.delay << "\t\t" << setprecision(6) << d << endl; results << (stats.delay * _opt.time_mul) << " " << setprecision(6) << d << endl; } cout << "Statistics written to: " << _stats_filename << endl; } catch (...) { cout << "Failed to write statistics to: " << _stats_filename << endl; } } // make sure write files is intended void Responder::safe_write_statistics_to_file(StatsMap mapStats, uint64_t max_success, int return_code) { if ((_opt.test_iterations > 0) && (_stats_filename.empty() == false) && (_opt.no_stats_file == false)) { if (mapStats.empty()) { cout << "No results to output (not writing statistics file)" << endl; } else if ((max_success == 0) && (return_code == RETCODE_MANUAL_ABORT)) { cout << "Aborted before a single successful timed burst (not writing statistics file)" << endl; } else { write_statistics_to_file(mapStats); } write_log_file(); } } // destructor, handle proper test shutdown Responder::~Responder() { endwin(); if(_pResponse != NULL){ delete[] _pResponse; } time( &_dbginfo.end_time ); // Print final info about test run print_final_statistics(); // check conditions and write statistics to file safe_write_statistics_to_file(_mapStats, _max_success, _return_code); cout << "program exited with code = " << enum2str(_return_code) << endl; } // make test output more helpful std::string Responder::enum2str(int return_code) { switch(return_code) { case RETCODE_OK: return "OK"; case RETCODE_BAD_ARGS: return "BAD_ARGS"; case RETCODE_RUNTIME_ERROR: return "RUNTIME_ERROR"; case RETCODE_UNKNOWN_EXCEPTION: return "UNKNOWN_EXCEPTION"; case RETCODE_RECEIVE_TIMEOUT: return "RECEIVE_TIMEOUT"; case RETCODE_RECEIVE_FAILED: return "RECEIVE_FAILED"; case RETCODE_MANUAL_ABORT: return "MANUAL_ABORT"; case RETCODE_BAD_PACKET: return "BAD_PACKET"; case RETCODE_OVERFLOW: return "OVERFLOW"; } return "UNKNOWN"; }