#!/usr/bin/env python # # Copyright 2012 Ettus Research LLC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # import sys, re from optparse import OptionParser import matplotlib.pyplot as plt import matplotlib.font_manager import numpy as np from gnuradio.eng_option import eng_option _units = [ (3, "k"), (6, "M"), (9, "G") ] def _format_rate(rate): for (u1, s1), (u2, s2) in zip(_units, _units[1:]): n = pow(10, u1) if rate >= n and rate < pow(10, u2): r = rate % n if r > 0: return str(1.0 * rate / n) + " " + s1 else: return str(rate / n) + " " + s1 return str(rate) + " " def _sort(series, keys): if len(keys) == 0: return [] key = keys[0] rev = False if key[0] == '-': key = key[1:] rev = True l = [] for s in series: if s[key] not in l: l += [s[key]] l.sort() if rev: l.reverse() return [(key, l)] + _sort(series, keys[1:]) def _order(series, sort_list): if len(sort_list) == 0: return series (sort_key, sort_key_list) = sort_list[0] if len(sort_key_list) == 0: return [] #print sort_key, sort_key_list l = [] for s in series: if s[sort_key] == sort_key_list[0]: l += [s] #print l return _order(l, sort_list[1:]) + _order(series, [(sort_list[0][0], sort_list[0][1][1:])] + sort_list[1:]) def get_option_parser(): usage = "%prog: [options]" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("", "--id", type="string", help="device ID [default: %default]", default=None) parser.add_option("", "--sort", type="string", help="sort order [default: %default]", default="rate -spb -spp") parser.add_option("", "--output", type="string", help="output file [default: %default]", default=None) parser.add_option("", "--output-type", type="string", help="output file type [default: %default]", default="pdf") parser.add_option("", "--output-size", type="string", help="output file size [default: %default pixels]", default="1600,900") parser.add_option("", "--xrange", type="float", help="X range [default: %default]", default=None) parser.add_option("", "--title", type="string", help="additional title [default: %default]", default=None) parser.add_option("", "--legend", type="string", help="legend position [default: %default]", default="lower right") parser.add_option("", "--diff", action="store_true", help="compare results instead of just plotting them", default=None) return parser def get_sorted_series(args, options): series = [] if len(args) > 0: with open(args[0]) as f: lines = f.readlines() else: lines = sys.stdin.readlines() if lines is None or len(lines) == 0: return for line in lines: line = line.strip() if len(line) == 0: continue x = {'file': line} idx2 = 0 idx = line.find("latency-stats") if idx > 0: x['prefix'] = line[0:idx] idx = line.find(".id_") if idx > -1: idx += 4 idx2 = line.find("-", idx) x['id'] = line[idx:idx2] if options.id is None: options.id = x['id'] elif options.id != x['id']: print "Different IDs:", options.id, x['id'] idx = line.find("-rate_") if idx > -1: idx += 6 idx2 = line.find("-", idx) x['rate'] = int(line[idx:idx2]) idx = line.find("-spb_") if idx > -1: idx += 5 idx2 = line.find("-", idx) x['spb'] = int(line[idx:idx2]) idx = line.find("-spp_") if idx > -1: idx += 5 #idx2 = line.find(".", idx) idx2 = re.search("\D", line[idx:]) if idx2: idx2 = idx + idx2.start() else: idx2 = -1 x['spp'] = int(line[idx:idx2]) idx = line.rfind(".") if idx > -1 and idx >= idx2: idx2 = re.search("\d", line[::-1][len(line) - idx:]) if idx2 and (idx2.start() > 0): idx2 = idx2.start() x['suffix'] = line[::-1][len(line) - idx:][0:idx2][::-1] print x series += [x] sort_keys = options.sort.split() print sort_keys sorted_key_list = _sort(series, sort_keys) print sorted_key_list series = _order(series, sorted_key_list) return series def main(): # Create object with all valid options parser = get_option_parser() # Read in given command line options and arguments (options, args) = parser.parse_args() # series contains path and attributes for all data sets given by args. series = get_sorted_series(args, options) # Read in actual data sets from file data = read_series_data(series) if options.diff: data = calculate_data_diff(data) # Get all the wanted properties for this plot plt_props = get_plt_props(options) print plt_props mpl_plot(data, plt_props) return 0 def read_series_data(series): result = [] for s in series: data = {} [data_x, data_y] = np.loadtxt(s['file'], delimiter=" ", unpack=True) data['x'] = data_x data['y'] = data_y data['metadata'] = s result.append(data) return result def find_values(data, key): result = [] for d in data: val = d['metadata'][key] if not val in result: result.append(val) return result def find_match(data, key, val): result = [] for d in data: meta = d['metadata'] if meta[key] == val: result.append(d) return result def get_data_diff(data): if not data: return data # just return. User didn't input any data. if len(data) < 2: return data[0] # Single data set. Can't calculate a diff. print "diff %d: rate %s, spb %s, spp %s" % (len(data), data[0]['metadata']['rate'], data[0]['metadata']['spb'], data[0]['metadata']['spp']) data = align_data(data) min_len = len(data[0]['x']) for d in data: min_len = min(min_len, len(d['x'])) metadiff = "" for d in data: m = d['metadata']['prefix'] for r in "/._": m = m.replace(r, "") metadiff += m + "-" xd = data[0]['x'][0:min_len] yd = data[0]['y'][0:min_len] meta = data[0]['metadata'] meta['diff'] = metadiff other = data[1:] for d in other: y = d['y'] for i in range(len(yd)): yd[i] -= y[i] result = {} result['x'] = xd result['y'] = yd result['metadata'] = meta return result def align_data(data): x_start = 0 for d in data: x_start = max(x_start, d['x'][0]) for i in range(len(data)): s = np.where(data[i]['x'] == x_start)[0] data[i]['x'] = data[i]['x'][s:] data[i]['y'] = data[i]['y'][s:] return data def calculate_data_diff(data): spps = find_values(data, "spp") spbs = find_values(data, "spb") rates = find_values(data, "rate") print spps, "\t", spbs, "\t", rates result = [] for rate in rates: rd = find_match(data, "rate", rate) for spb in spbs: bd = find_match(rd, "spb", spb) for spp in spps: pd = find_match(bd, "spp", spp) if len(pd) > 0: result.append(get_data_diff(pd)) return result def get_plt_props(options): plt_props = {} plt_out = None if options.output is not None: try: idx = options.output_size.find(",") x = int(options.output_size[0:idx]) y = int(options.output_size[idx + 1:]) plt_out = {'name': options.output, 'type': options.output_type, 'size': [x, y]} except: plt_out = None plt_props['output'] = plt_out plt_title = "Latency (" + options.id + ")" if options.title is not None and len(options.title) > 0: plt_title += " - " + options.title plt_props['title'] = plt_title plt_props['xlabel'] = "Latency (us)" plt_props['ylabel'] = "Normalised success of on-time burst transmission" plt_legend_loc = None if options.legend is not None: plt_legend_loc = options.legend plt_props['legend'] = plt_legend_loc plt_xrange = None if options.xrange is not None: plt_xrange = [0, options.xrange] plt_props['xrange'] = plt_xrange return plt_props def mpl_plot(data, props): plt_out = props['output'] plt_title = props['title'] plt_xlabel = props['xlabel'] plt_ylabel = props['ylabel'] plt_legend_loc = props['legend'] plt_xrange = props['xrange'] markers = ['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', '*', 'h', 'H', '+', 'D', 'd', '|', '_'] colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] midx = 0 # plot available data. mylegend = [] for d in data: mylegend.append(get_legend_str(d['metadata'])) plt.plot(d['x'], d['y'], marker=markers[midx], markerfacecolor=None) midx = (midx + 1) % len(markers) # Set all plot properties plt.title(plt_title) plt.xlabel(plt_xlabel) plt.ylabel(plt_ylabel) plt.grid() fontP = matplotlib.font_manager.FontProperties() fontP.set_size('x-small') plt.legend(mylegend, loc=plt_legend_loc, prop=fontP, ncol=2) if plt_xrange is not None: plt.xlim(plt_xrange) # Save plot to file, if option is given. if plt_out is not None: fig = plt.gcf() # get current figure dpi = 100.0 # Could be any value. It exists to convert the input in pixels to inches/dpi. figsize = (plt_out['size'][0] / dpi, plt_out['size'][1] / dpi) # calculate figsize in inches fig.set_size_inches(figsize) name = plt_out['name'] + "." + plt_out['type'] plt.savefig(name, dpi=dpi, bbox_inches='tight') plt.show() def get_legend_str(meta): lt = "" if meta['diff']: lt += meta['diff'] + " " lt += "%ssps, SPB %d, SPP %d" % (_format_rate(meta['rate']), meta['spb'], meta['spp']) return lt if __name__ == '__main__': main()