// // Copyright 2015-2016 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; using namespace uhd::convert; enum buf_init_t { RANDOM, INC }; // Convert `sc16_item32_le' -> `sc16' // Finds the first _ in format and returns the string // until then. Returns the entire string if no _ is found. std::string format_to_type(const std::string &format) { std::string ret_val = ""; for (size_t i = 0; i < format.length(); i++) { if (format[i] == '_') { return ret_val; } ret_val.append(1, format[i]); } return ret_val; } void configure_conv( converter::sptr conv, const std::string &in_type, const std::string &out_type ) { if (in_type == "sc16") { if (out_type == "fc32") { std::cout << "Setting scalar to 32767." << std::endl; conv->set_scalar(32767.); return; } } if (in_type == "fc32") { if (out_type == "sc16") { std::cout << "Setting scalar to 32767." << std::endl; conv->set_scalar(32767.); return; } } std::cout << "No configuration required." << std::endl; } template void init_random_vector_complex_float(std::vector &buf_ptr, const size_t n_items) { std::complex * const buf = reinterpret_cast * const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = std::complex( T((std::rand()/double(RAND_MAX/2)) - 1), T((std::rand()/double(RAND_MAX/2)) - 1) ); } } template void init_random_vector_complex_int(std::vector &buf_ptr, const size_t n_items) { std::complex * const buf = reinterpret_cast * const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = std::complex(T(std::rand()), T(std::rand())); } } template void init_random_vector_real_int(std::vector &buf_ptr, size_t n_items) { T * const buf = reinterpret_cast(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = T(std::rand()); } } // Fill a buffer with increasing numbers template void init_inc_vector(std::vector &buf_ptr, size_t n_items) { T * const buf = reinterpret_cast(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = T(i); } } void init_buffers( std::vector< std::vector > &buf, const std::string &type, size_t bytes_per_item, buf_init_t buf_seed_mode ) { if (buf.empty()) { return; } size_t n_items = buf[0].size() / bytes_per_item; /// Fill with incrementing integers if (buf_seed_mode == INC) { for (size_t i = 0; i < buf.size(); i++) { if (type == "sc8") { init_inc_vector< std::complex >(buf[i], n_items); } else if (type == "sc16") { init_inc_vector< std::complex >(buf[i], n_items); } else if (type == "sc32") { init_inc_vector< std::complex >(buf[i], n_items); } else if (type == "fc32") { init_inc_vector< std::complex >(buf[i], n_items); } else if (type == "fc64") { init_inc_vector< std::complex >(buf[i], n_items); } else if (type == "s8") { init_inc_vector< boost::int8_t >(buf[i], n_items); } else if (type == "s16") { init_inc_vector< boost::int16_t >(buf[i], n_items); } else if (type == "item32") { init_inc_vector< boost::uint32_t >(buf[i], n_items); init_random_vector_real_int(buf[i], n_items); } else { throw uhd::runtime_error(str( boost::format("Cannot handle data type: %s") % type )); } } return; } assert(buf_seed_mode == RANDOM); /// Fill with random data for (size_t i = 0; i < buf.size(); i++) { if (type == "sc8") { init_random_vector_complex_int(buf[i], n_items); } else if (type == "sc16") { init_random_vector_complex_int(buf[i], n_items); } else if (type == "sc32") { init_random_vector_complex_int(buf[i], n_items); } else if (type == "fc32") { init_random_vector_complex_float(buf[i], n_items); } else if (type == "fc64") { init_random_vector_complex_float(buf[i], n_items); } else if (type == "s8") { init_random_vector_real_int(buf[i], n_items); } else if (type == "s16") { init_random_vector_real_int(buf[i], n_items); } else if (type == "item32") { init_random_vector_real_int(buf[i], n_items); } else { throw uhd::runtime_error(str( boost::format("Cannot handle data type: %s") % type )); } } } // Returns time elapsed double run_benchmark( converter::sptr conv, const std::vector &input_buf_refs, const std::vector &output_buf_refs, size_t n_items, size_t iterations ) { boost::timer benchmark_timer; for (size_t i = 0; i < iterations; i++) { conv->conv(input_buf_refs, output_buf_refs, n_items); } return benchmark_timer.elapsed(); } template std::string void_ptr_to_hexstring(const void *v_ptr, size_t index) { const T *ptr = reinterpret_cast(v_ptr); return str(boost::format("%X") % ptr[index]); } std::string item_to_hexstring( const void *v_ptr, size_t index, const std::string &type ) { if (type == "fc32") { return void_ptr_to_hexstring(v_ptr, index); } else if (type == "sc16" || type == "item32") { return void_ptr_to_hexstring(v_ptr, index); } else if (type == "sc8" || type == "s16") { return void_ptr_to_hexstring(v_ptr, index); } else if (type == "u8") { return void_ptr_to_hexstring(v_ptr, index); } else { return str(boost::format("") % type); } } std::string item_to_string( const void *v_ptr, size_t index, const std::string &type, const bool print_hex ) { if (print_hex) { return item_to_hexstring(v_ptr, index, type); } if (type == "sc16") { const std::complex *ptr = reinterpret_cast *>(v_ptr); return boost::lexical_cast(ptr[index]); } else if (type == "sc8") { const std::complex *ptr = reinterpret_cast *>(v_ptr); return boost::lexical_cast(ptr[index]); } else if (type == "fc32") { const std::complex *ptr = reinterpret_cast *>(v_ptr); return boost::lexical_cast(ptr[index]); } else if (type == "item32") { const boost::uint32_t *ptr = reinterpret_cast(v_ptr); return boost::lexical_cast(ptr[index]); } else if (type == "s16") { const boost::int16_t *ptr = reinterpret_cast(v_ptr); return boost::lexical_cast(ptr[index]); } else { return str(boost::format("") % type); } } int UHD_SAFE_MAIN(int argc, char *argv[]) { std::string in_format, out_format; std::string priorities; std::string seed_mode; priority_type prio = -1, max_prio; size_t iterations, n_samples; size_t n_inputs, n_outputs; buf_init_t buf_seed_mode = RANDOM; /// Command line arguments po::options_description desc("Converter benchmark options:"); desc.add_options() ("help", "help message") ("in", po::value(&in_format), "Input format (e.g. 'sc16')") ("out", po::value(&out_format), "Output format (e.g. 'sc16')") ("samples", po::value(&n_samples)->default_value(1000000), "Number of samples per iteration") ("iterations", po::value(&iterations)->default_value(10000), "Number of iterations per benchmark") ("priorities", po::value(&priorities)->default_value("default"), "Converter priorities. Can be 'default', 'all', or a comma-separated list of priorities.") ("max-prio", po::value(&max_prio)->default_value(4), "Largest available priority (advanced feature)") ("n-inputs", po::value(&n_inputs)->default_value(1), "Number of input vectors") ("n-outputs", po::value(&n_outputs)->default_value(1), "Number of output vectors") ("debug-converter", "Skip benchmark and print conversion results. Implies iterations==1 and will only run on a single converter.") ("seed-mode", po::value(&seed_mode)->default_value("random"), "How to initialize the data: random, incremental") ("hex", "When using debug mode, dump memory in hex") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("UHD Converter Benchmark Tool %s") % desc << std::endl << std::endl; std::cout << " Use this to benchmark or debug converters." << std::endl << " When using as a benchmark tool, it will output the execution time\n" " for every conversion run in CSV format to stdout. Every line between\n" " the output delimiters {{{ }}} is of the format: ,