// // Copyright 2015-2016 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include <uhd/convert.hpp> #include <uhd/exception.hpp> #include <uhd/types/dict.hpp> #include <uhd/utils/safe_main.hpp> #include <stdint.h> #include <boost/algorithm/string.hpp> #include <boost/format.hpp> #include <boost/lexical_cast.hpp> #include <boost/program_options.hpp> #include <chrono> #include <complex> #include <iomanip> #include <iostream> #include <map> namespace po = boost::program_options; using namespace uhd::convert; enum buf_init_t { RANDOM, INC }; // Convert `sc16_item32_le' -> `sc16' // Finds the first _ in format and returns the string // until then. Returns the entire string if no _ is found. std::string format_to_type(const std::string& format) { std::string ret_val = ""; for (size_t i = 0; i < format.length(); i++) { if (format[i] == '_') { return ret_val; } ret_val.append(1, format[i]); } return ret_val; } void configure_conv( converter::sptr conv, const std::string& in_type, const std::string& out_type) { if (in_type == "sc16") { if (out_type == "fc32") { std::cout << "Setting scalar to 1./32767." << std::endl; conv->set_scalar(1. / 32767.); return; } } if (in_type == "fc32") { if (out_type == "sc16") { std::cout << "Setting scalar to 32767." << std::endl; conv->set_scalar(32767.); return; } } std::cout << "No configuration required." << std::endl; } template <typename T> void init_random_vector_complex_float(std::vector<char>& buf_ptr, const size_t n_items) { std::complex<T>* const buf = reinterpret_cast<std::complex<T>* const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = std::complex<T>( T(std::rand() / (RAND_MAX / 2.0) - 1), T(std::rand() / (RAND_MAX / 2.0) - 1)); } } template <typename T> void init_random_vector_complex_int(std::vector<char>& buf_ptr, const size_t n_items) { std::complex<T>* const buf = reinterpret_cast<std::complex<T>* const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = std::complex<T>(T(std::rand()), T(std::rand())); } } struct item32_sc12_3x { uint32_t line0; uint32_t line1; uint32_t line2; }; template <typename T> void init_random_vector_complex_sc12(std::vector<char>& buf_ptr, const size_t n_items) { item32_sc12_3x* const buf = reinterpret_cast<item32_sc12_3x* const>(&buf_ptr[0]); if (n_items % 4) throw std::invalid_argument(""); for (size_t i = 0; i < n_items / 4; i++) { int16_t iq[8]; for (auto& k : iq) k = rand() & 0xfff; buf[i].line0 = iq[0] << 20 | iq[1] << 8 | iq[2] >> 4; buf[i].line1 = iq[2] << 28 | iq[3] << 16 | iq[4] << 4 | iq[5] >> 8; buf[i].line2 = iq[5] << 24 | iq[6] << 12 | iq[7] << 0; } } template <typename T> void init_random_vector_real_int(std::vector<char>& buf_ptr, size_t n_items) { T* const buf = reinterpret_cast<T* const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = T(std::rand()); } } // Fill a buffer with increasing numbers template <typename T> void init_inc_vector(std::vector<char>& buf_ptr, size_t n_items) { T* const buf = reinterpret_cast<T* const>(&buf_ptr[0]); for (size_t i = 0; i < n_items; i++) { buf[i] = T(i); } } void init_buffers(std::vector<std::vector<char>>& buf, const std::string& type, size_t bytes_per_item, buf_init_t buf_seed_mode) { if (buf.empty()) { return; } size_t n_items = buf[0].size() / bytes_per_item; /// Fill with incrementing integers if (buf_seed_mode == INC) { for (size_t i = 0; i < buf.size(); i++) { if (type == "sc8") { init_inc_vector<std::complex<int8_t>>(buf[i], n_items); } else if (type == "sc16") { init_inc_vector<std::complex<int16_t>>(buf[i], n_items); } else if (type == "sc32") { init_inc_vector<std::complex<int32_t>>(buf[i], n_items); } else if (type == "fc32") { init_inc_vector<std::complex<float>>(buf[i], n_items); } else if (type == "fc64") { init_inc_vector<std::complex<double>>(buf[i], n_items); } else if (type == "s8") { init_inc_vector<int8_t>(buf[i], n_items); } else if (type == "s16") { init_inc_vector<int16_t>(buf[i], n_items); } else if (type == "item32") { init_inc_vector<uint32_t>(buf[i], n_items); init_random_vector_real_int<uint32_t>(buf[i], n_items); } else { throw uhd::runtime_error( str(boost::format("Cannot handle data type: %s") % type)); } } return; } assert(buf_seed_mode == RANDOM); /// Fill with random data for (size_t i = 0; i < buf.size(); i++) { if (type == "sc8") { init_random_vector_complex_int<int8_t>(buf[i], n_items); } else if (type == "sc12") { init_random_vector_complex_sc12<int16_t>(buf[i], n_items); } else if (type == "sc16") { init_random_vector_complex_int<int16_t>(buf[i], n_items); } else if (type == "sc32") { init_random_vector_complex_int<int32_t>(buf[i], n_items); } else if (type == "fc32") { init_random_vector_complex_float<float>(buf[i], n_items); } else if (type == "fc64") { init_random_vector_complex_float<double>(buf[i], n_items); } else if (type == "s8") { init_random_vector_real_int<int8_t>(buf[i], n_items); } else if (type == "s16") { init_random_vector_real_int<int16_t>(buf[i], n_items); } else if (type == "item32") { init_random_vector_real_int<uint32_t>(buf[i], n_items); } else { throw uhd::runtime_error( str(boost::format("Cannot handle data type: %s") % type)); } } } // Returns time elapsed double run_benchmark(converter::sptr conv, const std::vector<const void*>& input_buf_refs, const std::vector<void*>& output_buf_refs, size_t n_items, size_t iterations) { auto start = std::chrono::steady_clock::now(); for (size_t i = 0; i < iterations; i++) { conv->conv(input_buf_refs, output_buf_refs, n_items); } auto stop = std::chrono::steady_clock::now(); std::chrono::duration<double> duration = stop - start; return duration.count(); } template <typename T> std::string void_ptr_to_hexstring(const void* v_ptr, size_t index) { const T* ptr = reinterpret_cast<const T*>(v_ptr); return str(boost::format("%X") % ptr[index]); } std::string item_to_hexstring(const void* v_ptr, size_t index, const std::string& type) { if (type == "fc32") { return void_ptr_to_hexstring<uint64_t>(v_ptr, index); } else if (type == "sc16" || type == "item32") { return void_ptr_to_hexstring<uint32_t>(v_ptr, index); } else if (type == "sc8" || type == "s16") { return void_ptr_to_hexstring<uint16_t>(v_ptr, index); } else if (type == "u8") { return void_ptr_to_hexstring<uint8_t>(v_ptr, index); } else { return str(boost::format("<unhandled data type: %s>") % type); } } std::string item_to_string( const void* v_ptr, size_t index, const std::string& type, const bool print_hex) { if (print_hex) { return item_to_hexstring(v_ptr, index, type); } if (type == "sc16") { const std::complex<int16_t>* ptr = reinterpret_cast<const std::complex<int16_t>*>(v_ptr); return boost::lexical_cast<std::string>(ptr[index]); } else if (type == "sc8") { const std::complex<int8_t>* ptr = reinterpret_cast<const std::complex<int8_t>*>(v_ptr); return boost::lexical_cast<std::string>(ptr[index]); } else if (type == "fc32") { const std::complex<float>* ptr = reinterpret_cast<const std::complex<float>*>(v_ptr); return boost::lexical_cast<std::string>(ptr[index]); } else if (type == "item32") { const uint32_t* ptr = reinterpret_cast<const uint32_t*>(v_ptr); return boost::lexical_cast<std::string>(ptr[index]); } else if (type == "s16") { const int16_t* ptr = reinterpret_cast<const int16_t*>(v_ptr); return boost::lexical_cast<std::string>(ptr[index]); } else { return str(boost::format("<unhandled data type: %s>") % type); } } int UHD_SAFE_MAIN(int argc, char* argv[]) { std::string in_format, out_format; std::string priorities; std::string seed_mode; priority_type prio = -1, max_prio; size_t iterations, n_samples; size_t n_inputs, n_outputs; buf_init_t buf_seed_mode = RANDOM; /// Command line arguments po::options_description desc("Converter benchmark options:"); // clang-format off desc.add_options() ("help", "help message") ("in", po::value<std::string>(&in_format), "Input format (e.g. 'sc16')") ("out", po::value<std::string>(&out_format), "Output format (e.g. 'sc16')") ("samples", po::value<size_t>(&n_samples)->default_value(1000000), "Number of samples per iteration") ("iterations", po::value<size_t>(&iterations)->default_value(10000), "Number of iterations per benchmark") ("priorities", po::value<std::string>(&priorities)->default_value("default"), "Converter priorities. Can be 'default', 'all', or a comma-separated list of priorities.") ("max-prio", po::value<priority_type>(&max_prio)->default_value(4), "Largest available priority (advanced feature)") ("n-inputs", po::value<size_t>(&n_inputs)->default_value(1), "Number of input vectors") ("n-outputs", po::value<size_t>(&n_outputs)->default_value(1), "Number of output vectors") ("debug-converter", "Skip benchmark and print conversion results. Implies iterations==1 and will only run on a single converter.") ("seed-mode", po::value<std::string>(&seed_mode)->default_value("random"), "How to initialize the data: random, incremental") ("hex", "When using debug mode, dump memory in hex") ; // clang-format on po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // print the help message if (vm.count("help")) { std::cout << boost::format("UHD Converter Benchmark Tool %s") % desc << std::endl << std::endl; std::cout << " Use this to benchmark or debug converters." << std::endl << " When using as a benchmark tool, it will output the execution time\n" " for every conversion run in CSV format to stdout. Every line between\n" " the output delimiters {{{ }}} is of the format: <PRIO>,<TIME IN " "MILLISECONDS>\n" " When using for converter debugging, every line is formatted as\n" " <INPUT_VALUE>,<OUTPUT_VALUE>\n" << std::endl; return EXIT_FAILURE; } // Parse more arguments if (seed_mode == "incremental") { buf_seed_mode = INC; } else if (seed_mode == "random") { buf_seed_mode = RANDOM; } else { std::cout << "Invalid argument: --seed-mode must be either 'incremental' or 'random'." << std::endl; } bool debug_mode = vm.count("debug-converter") > 0; if (debug_mode) { iterations = 1; } /// Create the converter(s) ////////////////////////////////////////////// id_type converter_id; converter_id.input_format = in_format; converter_id.output_format = out_format; converter_id.num_inputs = n_inputs; converter_id.num_outputs = n_outputs; std::cout << "Requested converter format: " << converter_id.to_string() << std::endl; uhd::dict<priority_type, converter::sptr> conv_list; if (priorities == "default" or priorities.empty()) { try { conv_list[prio] = get_converter(converter_id, prio)(); // Can throw a uhd::key_error } catch (const uhd::key_error&) { std::cout << "No converters found." << std::endl; return EXIT_FAILURE; } } else if (priorities == "all") { for (priority_type i = 0; i < max_prio; i++) { try { // get_converter() returns a factory function, execute that immediately: converter::sptr conv_for_prio = get_converter(converter_id, i)(); // Can throw a uhd::key_error conv_list[i] = conv_for_prio; } catch (...) { continue; } } } else { // Assume that priorities contains a list of prios (e.g. 0,2,3) std::vector<std::string> prios_in_list; boost::split(prios_in_list, priorities, boost::is_any_of(","), // Split at , boost::token_compress_on // Avoid empty results ); for (const std::string& this_prio : prios_in_list) { size_t prio_index = boost::lexical_cast<size_t>(this_prio); converter::sptr conv_for_prio = get_converter(converter_id, prio_index)(); // Can throw a uhd::key_error conv_list[prio_index] = conv_for_prio; } } std::cout << "Found " << conv_list.size() << " converter(s)." << std::endl; /// Create input and output buffers /////////////////////////////////////// // First, convert the types to plain types (e.g. sc16_item32_le -> sc16) const std::string in_type = format_to_type(in_format); const std::string out_type = format_to_type(out_format); const size_t in_size = get_bytes_per_item(in_type); const size_t out_size = get_bytes_per_item(out_type); // Create the buffers and fill them with random data & zeros, respectively std::vector<std::vector<char>> input_buffers( n_inputs, std::vector<char>(in_size * n_samples, 0)); std::vector<std::vector<char>> output_buffers( n_outputs, std::vector<char>(out_size * n_samples, 0)); init_buffers(input_buffers, in_type, in_size, buf_seed_mode); // Create ref vectors for the converter: std::vector<const void*> input_buf_refs(n_inputs); std::vector<void*> output_buf_refs(n_outputs); for (size_t i = 0; i < n_inputs; i++) { input_buf_refs[i] = reinterpret_cast<const void*>(&input_buffers[i][0]); } for (size_t i = 0; i < n_outputs; i++) { output_buf_refs[i] = reinterpret_cast<void*>(&output_buffers[i][0]); } /// Final configurations to the converter: std::cout << "Configuring converters:" << std::endl; for (priority_type prio_i : conv_list.keys()) { std::cout << "* [" << prio_i << "]: "; configure_conv(conv_list[prio_i], in_type, out_type); } /// Run the benchmark for every converter //////////////////////////////// std::cout << "{{{" << std::endl; if (not debug_mode) { std::cout << "prio,duration_ms,avg_duration_ms,n_samples,iterations" << std::endl; for (priority_type prio_i : conv_list.keys()) { double duration = run_benchmark(conv_list[prio_i], input_buf_refs, output_buf_refs, n_samples, iterations); std::cout << boost::format("%i,%d,%d,%d,%d") % prio_i % (duration * 1000) % (duration * 1000.0 / iterations) % n_samples % iterations << std::endl; } } /// Or run debug mode, which runs one conversion and prints the results //// if (debug_mode) { // Only run on the first converter: run_benchmark(conv_list[conv_list.keys().at(0)], input_buf_refs, output_buf_refs, n_samples, iterations); for (size_t i = 0; i < n_samples; i++) { std::cout << item_to_string(input_buf_refs[0], i, in_type, vm.count("hex")) << ";" << item_to_string(reinterpret_cast<const void*>(output_buf_refs[0]), i, out_type, vm.count("hex")) << std::endl; } } std::cout << "}}}" << std::endl; return EXIT_SUCCESS; }