// // Copyright 2010-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // #include <cstdlib> #include <cstring> #include <iostream> #include <iomanip> #include <fstream> #include <libusb.h> #include <sstream> #include <string> #include <cmath> #include <cstring> #include <stdint.h> #include <boost/filesystem.hpp> #include <boost/lexical_cast.hpp> #include <boost/format.hpp> #include <boost/program_options.hpp> #include <boost/thread/thread.hpp> #include <boost/functional/hash.hpp> #include <b200_iface.hpp> #include <uhd/config.hpp> #include <uhd/transport/usb_control.hpp> #include <uhd/transport/usb_device_handle.hpp> #include <uhd/exception.hpp> #include <uhd/utils/paths.hpp> namespace po = boost::program_options; namespace fs = boost::filesystem; struct vid_pid_t { uint16_t vid; uint16_t pid; }; const static vid_pid_t known_vid_pids[] = { {FX3_VID, FX3_DEFAULT_PID}, {FX3_VID, FX3_REENUM_PID}, {B200_VENDOR_ID, B200_PRODUCT_ID}, {B200_VENDOR_ID, B200MINI_PRODUCT_ID}, {B200_VENDOR_ID, B205MINI_PRODUCT_ID}, {B200_VENDOR_NI_ID, B200_PRODUCT_NI_ID}, {B200_VENDOR_NI_ID, B210_PRODUCT_NI_ID} }; const static std::vector<vid_pid_t> known_vid_pid_vector(known_vid_pids, known_vid_pids + (sizeof(known_vid_pids) / sizeof(known_vid_pids[0]))); static const size_t EEPROM_INIT_VALUE_VECTOR_SIZE = 8; static uhd::byte_vector_t construct_eeprom_init_value_vector(uint16_t vid, uint16_t pid) { uhd::byte_vector_t init_values(EEPROM_INIT_VALUE_VECTOR_SIZE); init_values.at(0) = 0x43; init_values.at(1) = 0x59; init_values.at(2) = 0x14; init_values.at(3) = 0xB2; init_values.at(4) = static_cast<uint8_t>(pid & 0xff); init_values.at(5) = static_cast<uint8_t>(pid >> 8); init_values.at(6) = static_cast<uint8_t>(vid & 0xff); init_values.at(7) = static_cast<uint8_t>(vid >> 8); return init_values; } //!used with lexical cast to parse a hex string template <class T> struct to_hex{ T value; operator T() const {return value;} friend std::istream& operator>>(std::istream& in, to_hex& out){ in >> std::hex >> out.value; return in; } }; //!parse hex-formatted ASCII text into an int uint16_t atoh(const std::string &string){ if (string.substr(0, 2) == "0x"){ std::stringstream interpreter(string); to_hex<uint16_t> hh; interpreter >> hh; return hh.value; } return boost::lexical_cast<uint16_t>(string); } int reset_usb() { /* Okay, first, we need to discover what the path is to the ehci and * xhci device files. */ std::set<fs::path> path_list; path_list.insert("/sys/bus/pci/drivers/xhci-pci/"); path_list.insert("/sys/bus/pci/drivers/ehci-pci/"); path_list.insert("/sys/bus/pci/drivers/xhci_hcd/"); path_list.insert("/sys/bus/pci/drivers/ehci_hcd/"); /* Check each of the possible paths above to find which ones this system * uses. */ for(std::set<fs::path>::iterator found = path_list.begin(); found != path_list.end(); ++found) { if(fs::exists(*found)) { fs::path devpath = *found; std::set<fs::path> globbed; /* Now, glob all of the files in the directory. */ fs::directory_iterator end_itr; for(fs::directory_iterator itr(devpath); itr != end_itr; ++itr) { globbed.insert((*itr).path()); } /* Check each file path string to see if it is a device file. */ for(std::set<fs::path>::iterator it = globbed.begin(); it != globbed.end(); ++it) { std::string file = fs::path((*it).filename()).string(); if (file.length() < 5) continue; if(file.compare(0, 5, "0000:") == 0) { /* Un-bind the device. */ std::fstream unbind((devpath.string() + "unbind").c_str(), std::fstream::out); unbind << file; unbind.close(); /* Re-bind the device. */ std::cout << "Re-binding: " << file << " in " << devpath.string() << std::endl; std::fstream bind((devpath.string() + "bind").c_str(), std::fstream::out); bind << file; bind.close(); } } } } return 0; } uhd::transport::usb_device_handle::sptr open_device(const uint16_t vid, const uint16_t pid, const bool user_supplied = false) { std::vector<uhd::transport::usb_device_handle::sptr> handles; uhd::transport::usb_device_handle::sptr handle; vid_pid_t vp = {vid, pid}; try { // try caller's VID/PID first std::vector<uhd::transport::usb_device_handle::vid_pid_pair_t> vid_pid_pair_list(1,uhd::transport::usb_device_handle::vid_pid_pair_t(vid,pid)); handles = uhd::transport::usb_device_handle::get_device_list(vid_pid_pair_list); if (handles.size() == 0) { if (user_supplied) { std::cerr << (boost::format("Failed to open device with VID 0x%04x and PID 0x%04x - trying other known VID/PIDs") % vid % pid).str() << std::endl; } // try known VID/PIDs next for (size_t i = 0; handles.size() == 0 && i < known_vid_pid_vector.size(); i++) { vp = known_vid_pid_vector[i]; handles = uhd::transport::usb_device_handle::get_device_list(vp.vid, vp.pid); } } if (handles.size() > 0) { handle = handles[0]; std::cout << (boost::format("Device opened (VID=0x%04x,PID=0x%04x)") % vp.vid % vp.pid).str() << std::endl; } if (!handle) std::cerr << "Cannot open device" << std::endl; } catch(const std::exception &) { std::cerr << "Failed to communicate with the device!" << std::endl; #ifdef UHD_PLATFORM_WIN32 std::cerr << "The necessary drivers are not installed. Read the UHD Transport Application Notes for details:\nhttp://files.ettus.com/manual/page_transport.html" << std::endl; #endif /* UHD_PLATFORM_WIN32 */ handle.reset(); } return handle; } b200_iface::sptr make_b200_iface(const uhd::transport::usb_device_handle::sptr &handle) { b200_iface::sptr b200; try { uhd::transport::usb_control::sptr usb_ctrl = uhd::transport::usb_control::make(handle, 0); b200 = b200_iface::make(usb_ctrl); if (!b200) std::cerr << "Cannot create device interface" << std::endl; } catch(const std::exception &) { std::cerr << "Failed to communicate with the device!" << std::endl; #ifdef UHD_PLATFORM_WIN32 std::cerr << "The necessary drivers are not installed. Read the UHD Transport Application Notes for details:\nhttp://files.ettus.com/manual/page_transport.html" << std::endl; #endif /* UHD_PLATFORM_WIN32 */ b200.reset(); } return b200; } int read_eeprom(b200_iface::sptr& b200, uhd::byte_vector_t& data) { try { data = b200->read_eeprom(0x0, 0x0, 8); } catch (std::exception &e) { std::cerr << "Exception while reading EEPROM: " << e.what() << std::endl; return -1; } return 0; } int write_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { try { b200->write_eeprom(0x0, 0x0, data); } catch (std::exception &e) { std::cerr << "Exception while writing EEPROM: " << e.what() << std::endl; return -1; } return 0; } int verify_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { bool verified = true; uhd::byte_vector_t read_bytes; if (read_eeprom(b200, read_bytes)) return -1; if (data.size() != read_bytes.size()) { std::cerr << "ERROR: Only able to verify first " << std::min(data.size(), read_bytes.size()) << " bytes." << std::endl; verified = false; } for (size_t i = 0; i < std::min(data.size(), read_bytes.size()); i++) { if (data[i] != read_bytes[i]) { verified = false; std::cerr << "Byte " << i << " Expected: " << data[i] << ", Got: " << read_bytes[i] << std::endl; } } if (!verified) { std::cerr << "Verification failed" << std::endl; return -1; } return 0; } int write_and_verify_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { if (write_eeprom(b200, data)) return -1; if (verify_eeprom(b200, data)) return -1; return 0; } int erase_eeprom(b200_iface::sptr& b200) { uhd::byte_vector_t bytes(8); memset(&bytes[0], 0xFF, 8); if (write_and_verify_eeprom(b200, bytes)) return -1; return 0; } int32_t main(int32_t argc, char *argv[]) { uint16_t vid, pid; std::string pid_str, vid_str, fw_file, fpga_file, writevid_str, writepid_str; bool user_supplied_vid_pid = false; po::options_description visible("Allowed options"); visible.add_options() ("help,h", "help message") ("vid,v", po::value<std::string>(&vid_str), "Specify VID of device to use.") ("pid,p", po::value<std::string>(&pid_str), "Specify PID of device to use.") ("speed,S", "Read back the USB mode currently in use.") ("reset-device,D", "Reset the B2xx Device.") ("reset-fpga,F", "Reset the FPGA (does not require re-programming.") ("reset-usb,U", "Reset the USB subsystem on your host computer.") ("load-fw,W", po::value<std::string>(&fw_file), "Load a firmware (hex) file into the FX3.") ("load-fpga,L", po::value<std::string>(&fpga_file), "Load a FPGA (bin) file into the FPGA.") ; // Hidden options provided for testing - use at your own risk! po::options_description hidden("Hidden options"); hidden.add_options() ("init-device,I", "Initialize a B2xx device.") ("uninit-device", "Uninitialize a B2xx device.") ("read-eeprom,R", "Read first 8 bytes of EEPROM") ("erase-eeprom,E", "Erase first 8 bytes of EEPROM") ("write-vid", po::value<std::string>(&writevid_str), "Write VID field of EEPROM") ("write-pid", po::value<std::string>(&writepid_str), "Write PID field of EEPROM"); po::options_description desc; desc.add(visible); desc.add(hidden); po::variables_map vm; try { po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); } catch (std::exception &e) { std::cerr << "Exception while parsing arguments: " << e.what() << std::endl; std::cout << boost::format("B2xx Utility Program %s") % visible << std::endl; return ~0; } if (vm.count("help")){ try { std::cout << boost::format("B2xx Utility Program %s") % visible << std::endl; } catch(...) {} return ~0; } if (vm.count("reset-usb")) { return reset_usb(); } uhd::transport::usb_device_handle::sptr handle; b200_iface::sptr b200; vid = B200_VENDOR_ID; // Default pid = B200_PRODUCT_ID; // Default if (vm.count("vid") && vm.count("pid")) { try { vid = atoh(vid_str); pid = atoh(pid_str); } catch (std::exception &e) { std::cerr << "Exception while parsing VID and PID: " << e.what() << std:: endl; return ~0; } user_supplied_vid_pid = true; } // open the device handle = open_device(vid, pid, user_supplied_vid_pid); if (!handle) return -1; std::cout << "B2xx detected..." << std::flush; // make the interface b200 = make_b200_iface(handle); if (!b200) return -1; std::cout << " Control of B2xx granted..." << std::endl << std::endl; // if we are supposed to load a new firmware image and one already exists, reset the FX3 so we can load the new one if (vm.count("load-fw") && handle->firmware_loaded()) { std::cout << "Overwriting existing firmware" << std::endl; // before we reset, make sure we have a good firmware file if(!(fs::exists(fw_file))) { std::cerr << "Invalid firmware filepath: " << fw_file << std::endl; return -1; } // reset the device try { b200->reset_fx3(); } catch (std::exception &e) { std::cerr << "Exception while reseting FX3: " << e.what() << std::endl; } // re-open device b200.reset(); handle.reset(); boost::this_thread::sleep(boost::posix_time::seconds(2)); // wait 2 seconds for FX3 to reset handle = open_device(vid, pid); if (!handle) return -1; b200 = make_b200_iface(handle); if (!b200) return -1; } // Check to make sure firmware is loaded if (!(handle->firmware_loaded())) { std::cout << "Loading firmware" << std::endl; if (fw_file.empty()) fw_file = uhd::find_image_path(B200_FW_FILE_NAME); if(fw_file.empty()) { std::cerr << "Firmware image not found!" << std::endl; return -1; } if(!(fs::exists(fw_file))) { std::cerr << "Invalid filepath: " << fw_file << std::endl; return -1; } // load firmware try { b200->load_firmware(fw_file); } catch (std::exception &e) { std::cerr << "Exception while loading firmware: " << e.what() << std::endl; return ~0; } // re-open device b200.reset(); handle.reset(); handle = open_device(vid, pid); if (!handle) return -1; b200 = make_b200_iface(handle); if (!b200) return -1; std::cout << "Firmware loaded" << std::endl; } // Added for testing purposes - not exposed if (vm.count("read-eeprom")) { uhd::byte_vector_t data; if (read_eeprom(b200, data)) return -1; for (int i = 0; i < 8; i++) std::cout << i << ": " << boost::format("0x%X") % (int)data[i] << std::endl; return 0; } // Added for testing purposes - not exposed if (vm.count("erase-eeprom")) { if (erase_eeprom(b200)) return -1; std::cout << "Erase Successful!" << std::endl; return 0; } // Added for testing purposes - not exposed if (vm.count("uninit-device")) { // erase EEPROM erase_eeprom(b200); std::cout << "EEPROM uninitialized, resetting device..." << std::endl << std::endl; // reset the device try { b200->reset_fx3(); } catch (uhd::exception &e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return -1; } std::cout << "Uninitialization Process Complete." << std::endl << std::endl; return 0; } /* If we are initializing the device, the VID/PID should default to the * Cypress VID/PID for the initial FW load, but we can initialize from any state. */ if (vm.count("init-device")) { uint16_t writevid = B200_VENDOR_ID; uint16_t writepid = B200_PRODUCT_ID; /* Now, initialize the device. */ // Added for testing purposes - not exposed if (vm.count("write-vid") && vm.count("write-pid")) { try { writevid = atoh(writevid_str); writepid = atoh(writepid_str); } catch (std::exception &e) { std::cerr << "Exception while parsing write VID and PID: " << e.what() << std:: endl; return ~0; } } std::cout << "Writing VID and PID to EEPROM..." << std::endl << std::endl; if (write_and_verify_eeprom(b200, construct_eeprom_init_value_vector(writevid, writepid))) return -1; std::cout << "EEPROM initialized, resetting device..." << std::endl << std::endl; /* Reset the device! */ try { b200->reset_fx3(); } catch (const std::exception &e) { std::cerr << "Exception while resetting device: " << e.what() << std::endl; return -1; } std::cout << "Initialization Process Complete." << std::endl << std::endl; return 0; } uint8_t data_buffer[16]; memset(data_buffer, 0x0, sizeof(data_buffer)); if (vm.count("speed")){ uint8_t speed; try {speed = b200->get_usb_speed();} catch (uhd::exception &e) { std::cerr << "Exception while getting USB speed: " << e.what() << std::endl; return -1; } std::cout << "Currently operating at USB " << (int) speed << std::endl; } if (vm.count("reset-device")) { try {b200->reset_fx3();} catch (uhd::exception &e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return -1; } } else if (vm.count("reset-fpga")) { try {b200->set_fpga_reset_pin(true);} catch (uhd::exception &e) { std::cerr << "Exception while resetting FPGA: " << e.what() << std::endl; return -1; } } else if (vm.count("load-fpga")) { std::cout << "Loading FPGA image (" << fpga_file << ")" << std::endl; uint32_t fx3_state; try {fx3_state = b200->load_fpga(fpga_file);} // returns 0 on success, or FX3 state on error catch (uhd::exception &e) { std::cerr << "Exception while loading FPGA: " << e.what() << std::endl; return ~0; } if (fx3_state != 0) { std::cerr << std::flush << "Error loading FPGA. FX3 state (" << fx3_state << "): " << b200_iface::fx3_state_string(fx3_state) << std::endl; return ~0; } std::cout << "FPGA load complete, releasing USB interface..." << std::endl; } std::cout << "Operation complete! I did it! I did it!" << std::endl; return 0; }