// // Copyright 2010-2014 Ettus Research LLC // Copyright 2018-2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; namespace fs = boost::filesystem; namespace { struct vid_pid_t { uint16_t vid; uint16_t pid; }; const vid_pid_t known_vid_pids[] = {{FX3_VID, FX3_DEFAULT_PID}, {FX3_VID, FX3_REENUM_PID}, {B200_VENDOR_ID, B200_PRODUCT_ID}, {B200_VENDOR_ID, B200MINI_PRODUCT_ID}, {B200_VENDOR_ID, B205MINI_PRODUCT_ID}, {B200_VENDOR_NI_ID, B200_PRODUCT_NI_ID}, {B200_VENDOR_NI_ID, B210_PRODUCT_NI_ID}}; const std::vector known_vid_pid_vector(known_vid_pids, known_vid_pids + (sizeof(known_vid_pids) / sizeof(known_vid_pids[0]))); const uhd::byte_vector_t OLD_EEPROM_SIGNATURE = {0x43, 0x59, 0x14, 0xB2}; const uhd::byte_vector_t NEW_EEPROM_SIGNATURE = {0x43, 0x59, 0x1A, 0xB0}; const size_t EEPROM_INIT_VALUE_VECTOR_SIZE = 8; uhd::byte_vector_t construct_eeprom_init_value_vector(uint16_t vid, uint16_t pid) { uhd::byte_vector_t init_values(OLD_EEPROM_SIGNATURE); init_values.push_back(static_cast(pid & 0xff)); init_values.push_back(static_cast(pid >> 8)); init_values.push_back(static_cast(vid & 0xff)); init_values.push_back(static_cast(vid >> 8)); return init_values; } constexpr uint8_t EEPROM_DATA_ADDR_HIGH_BYTE = 0x7F; constexpr uint8_t EEPROM_DATA_HEADER_ADDR = 0x00; constexpr uint8_t EEPROM_DATA_VID_PID_ADDR = 0x06; constexpr uint8_t EEPROM_DATA_OLD_DATA_ADDR = 0x0A; const uhd::byte_vector_t EEPROM_DATA_HEADER = { 0x00, 0xB2, // magic 0x01, 0x00, // eeprom_revision 0x01, 0x00 // eeprom_compat }; } // namespace //! used with lexical cast to parse a hex string template struct to_hex { T value; operator T() const { return value; } friend std::istream& operator>>(std::istream& in, to_hex& out) { in >> std::hex >> out.value; return in; } }; //! parse hex-formatted ASCII text into an int uint16_t atoh(const std::string& string) { if (string.substr(0, 2) == "0x") { std::stringstream interpreter(string); to_hex hh; interpreter >> hh; return hh.value; } return boost::lexical_cast(string); } int reset_usb() { /* Okay, first, we need to discover what the path is to the ehci and * xhci device files. */ std::set path_list; path_list.insert("/sys/bus/pci/drivers/xhci-pci/"); path_list.insert("/sys/bus/pci/drivers/ehci-pci/"); path_list.insert("/sys/bus/pci/drivers/xhci_hcd/"); path_list.insert("/sys/bus/pci/drivers/ehci_hcd/"); /* Check each of the possible paths above to find which ones this system * uses. */ for (std::set::iterator found = path_list.begin(); found != path_list.end(); ++found) { if (fs::exists(*found)) { fs::path devpath = *found; std::set globbed; /* Now, glob all of the files in the directory. */ fs::directory_iterator end_itr; for (fs::directory_iterator itr(devpath); itr != end_itr; ++itr) { globbed.insert((*itr).path()); } /* Check each file path string to see if it is a device file. */ for (std::set::iterator it = globbed.begin(); it != globbed.end(); ++it) { std::string file = fs::path((*it).filename()).string(); if (file.length() < 5) continue; if (file.compare(0, 5, "0000:") == 0) { /* Un-bind the device. */ std::fstream unbind( (devpath.string() + "unbind").c_str(), std::fstream::out); unbind << file; unbind.close(); /* Re-bind the device. */ std::cout << "Re-binding: " << file << " in " << devpath.string() << std::endl; std::fstream bind( (devpath.string() + "bind").c_str(), std::fstream::out); bind << file; bind.close(); } } } } return 0; } uhd::transport::usb_device_handle::sptr open_device( const uint16_t vid, const uint16_t pid, const bool user_supplied = false) { std::vector handles; uhd::transport::usb_device_handle::sptr handle; vid_pid_t vp = {vid, pid}; try { // try caller's VID/PID first std::vector vid_pid_pair_list( 1, uhd::transport::usb_device_handle::vid_pid_pair_t(vid, pid)); handles = uhd::transport::usb_device_handle::get_device_list(vid_pid_pair_list); if (handles.empty()) { if (user_supplied) { std::cerr << (boost::format("Failed to open device with VID 0x%04x and " "PID 0x%04x - trying other known VID/PIDs") % vid % pid) .str() << std::endl; } // try known VID/PIDs next for (size_t i = 0; handles.empty() && i < known_vid_pid_vector.size(); i++) { vp = known_vid_pid_vector[i]; handles = uhd::transport::usb_device_handle::get_device_list(vp.vid, vp.pid); } } if (!handles.empty()) { handle = handles[0]; std::cout << (boost::format("Device opened (VID=0x%04x,PID=0x%04x)") % vp.vid % vp.pid) .str() << std::endl; } if (!handle) std::cerr << "Cannot open device" << std::endl; } catch (const std::exception&) { std::cerr << "Failed to communicate with the device!" << std::endl; #ifdef UHD_PLATFORM_WIN32 std::cerr << "The necessary drivers are not installed. Read the UHD Transport " "Application Notes for " "details:\nhttp://files.ettus.com/manual/page_transport.html" << std::endl; #endif /* UHD_PLATFORM_WIN32 */ handle.reset(); } return handle; } b200_iface::sptr make_b200_iface(const uhd::transport::usb_device_handle::sptr& handle) { b200_iface::sptr b200; try { uhd::transport::usb_control::sptr usb_ctrl = uhd::transport::usb_control::make(handle, 0); b200 = b200_iface::make(usb_ctrl); if (!b200) std::cerr << "Cannot create device interface" << std::endl; } catch (const std::exception&) { std::cerr << "Failed to communicate with the device!" << std::endl; #ifdef UHD_PLATFORM_WIN32 std::cerr << "The necessary drivers are not installed. Read the UHD Transport " "Application Notes for " "details:\nhttp://files.ettus.com/manual/page_transport.html" << std::endl; #endif /* UHD_PLATFORM_WIN32 */ b200.reset(); } return b200; } int read_eeprom(b200_iface::sptr& b200, uhd::byte_vector_t& data) { try { data = b200->read_eeprom(0x0, 0x0, 8); } catch (std::exception& e) { std::cerr << "Exception while reading EEPROM: " << e.what() << std::endl; return -1; } return 0; } int write_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { try { b200->write_eeprom(0x0, 0x0, data); } catch (std::exception& e) { std::cerr << "Exception while writing EEPROM: " << e.what() << std::endl; return -1; } return 0; } int verify_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { bool verified = true; uhd::byte_vector_t read_bytes; if (read_eeprom(b200, read_bytes)) return -1; if (data.size() != read_bytes.size()) { std::cerr << "ERROR: Only able to verify first " << std::min(data.size(), read_bytes.size()) << " bytes." << std::endl; verified = false; } for (size_t i = 0; i < std::min(data.size(), read_bytes.size()); i++) { if (data[i] != read_bytes[i]) { verified = false; std::cerr << "Byte " << i << " Expected: " << data[i] << ", Got: " << read_bytes[i] << std::endl; } } if (!verified) { std::cerr << "Verification failed" << std::endl; return -1; } return 0; } int write_and_verify_eeprom(b200_iface::sptr& b200, const uhd::byte_vector_t& data) { if (write_eeprom(b200, data)) return -1; if (verify_eeprom(b200, data)) return -1; return 0; } int erase_eeprom(b200_iface::sptr& b200) { uhd::byte_vector_t bytes(8); memset(&bytes[0], 0xFF, 8); if (write_and_verify_eeprom(b200, bytes)) return -1; return 0; } int32_t main(int32_t argc, char* argv[]) { uint16_t vid, pid; std::string pid_str, vid_str, fw_file, fpga_file, bl_file, writevid_str, writepid_str; bool user_supplied_vid_pid = false; // clang-format off po::options_description visible("Allowed options"); visible.add_options()( "help,h", "help message")( "vid,v", po::value(&vid_str), "Specify VID of device to use.")( "pid,p", po::value(&pid_str), "Specify PID of device to use.")( "speed,S", "Read back the USB mode currently in use.")( "reset-device,D", "Reset the B2xx Device.")( "reset-fpga,F", "Reset the FPGA (does not require re-programming.")( "reset-usb,U", "Reset the USB subsystem on your host computer.")( "load-fw,W", po::value(&fw_file), "Load a firmware (hex) file into the FX3.")( "load-fpga,L", po::value(&fpga_file), "Load a FPGA (bin) file into the FPGA.")( "load-bootloader,B", po::value(&bl_file), "Load a bootloader (img) file into the EEPROM")( "query-bootloader,Q", "Check if bootloader is loaded.")( "unload-bootloader,u", "Remove bootloader."); // Hidden options provided for testing - use at your own risk! po::options_description hidden("Hidden options"); hidden.add_options()( "init-device,I", "Initialize a B2xx device.")( "uninit-device", "Uninitialize a B2xx device.")( "read-eeprom,R", "Read first 8 bytes of EEPROM")( "erase-eeprom,E", "Erase first 8 bytes of EEPROM")( "write-vid", po::value(&writevid_str), "Write VID field of EEPROM")( "write-pid", po::value(&writepid_str), "Write PID field of EEPROM"); // clang-format on po::options_description desc; desc.add(visible); desc.add(hidden); po::variables_map vm; try { po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); } catch (std::exception& e) { std::cerr << "Exception while parsing arguments: " << e.what() << std::endl; std::cout << boost::format("B2xx Utility Program %s") % visible << std::endl; return ~0; } if (vm.count("help")) { try { std::cout << boost::format("B2xx Utility Program %s") % visible << std::endl; } catch (...) { } return ~0; } if (vm.count("reset-usb")) { return reset_usb(); } uhd::transport::usb_device_handle::sptr handle; b200_iface::sptr b200; vid = B200_VENDOR_ID; // Default pid = B200_PRODUCT_ID; // Default if (vm.count("vid") && vm.count("pid")) { try { vid = atoh(vid_str); pid = atoh(pid_str); } catch (std::exception& e) { std::cerr << "Exception while parsing VID and PID: " << e.what() << std::endl; return ~0; } user_supplied_vid_pid = true; } // open the device handle = open_device(vid, pid, user_supplied_vid_pid); if (!handle) return -1; std::cout << "B2xx detected..." << std::flush; // make the interface b200 = make_b200_iface(handle); if (!b200) return -1; std::cout << " Control of B2xx granted..." << std::endl << std::endl; // if we are supposed to load a new firmware image and one already exists, reset the // FX3 so we can load the new one if (vm.count("load-fw") && handle->firmware_loaded()) { std::cout << "Overwriting existing firmware" << std::endl; // before we reset, make sure we have a good firmware file if (!(fs::exists(fw_file))) { std::cerr << "Invalid firmware filepath: " << fw_file << std::endl; return -1; } // reset the device try { b200->reset_fx3(); } catch (std::exception& e) { std::cerr << "Exception while reseting FX3: " << e.what() << std::endl; } // re-open device b200.reset(); handle.reset(); std::this_thread::sleep_for( std::chrono::seconds(2)); // wait 2 seconds for FX3 to reset handle = open_device(vid, pid); if (!handle) return -1; b200 = make_b200_iface(handle); if (!b200) return -1; } // Check to make sure firmware is loaded if (!(handle->firmware_loaded())) { std::cout << "Loading firmware" << std::endl; if (fw_file.empty()) fw_file = uhd::find_image_path(B200_FW_FILE_NAME); if (fw_file.empty()) { std::cerr << "Firmware image not found!" << std::endl; return -1; } if (!(fs::exists(fw_file))) { std::cerr << "Invalid filepath: " << fw_file << std::endl; return -1; } // load firmware try { b200->load_firmware(fw_file); } catch (std::exception& e) { std::cerr << "Exception while loading firmware: " << e.what() << std::endl; return ~0; } // re-open device b200.reset(); handle.reset(); handle = open_device(vid, pid); if (!handle) return -1; b200 = make_b200_iface(handle); if (!b200) return -1; std::cout << "Firmware loaded" << std::endl; } // Added for testing purposes - not exposed if (vm.count("read-eeprom")) { uhd::byte_vector_t data; if (read_eeprom(b200, data)) return -1; for (int i = 0; i < 8; i++) std::cout << i << ": " << boost::format("0x%X") % (int)data[i] << std::endl; return 0; } // Added for testing purposes - not exposed if (vm.count("erase-eeprom")) { if (erase_eeprom(b200)) return -1; std::cout << "Erase Successful!" << std::endl; return 0; } // Added for testing purposes - not exposed if (vm.count("uninit-device")) { // erase EEPROM erase_eeprom(b200); std::cout << "EEPROM uninitialized, resetting device..." << std::endl << std::endl; // reset the device try { b200->reset_fx3(); } catch (uhd::exception& e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return -1; } std::cout << "Uninitialization Process Complete." << std::endl << std::endl; return 0; } /* If we are initializing the device, the VID/PID should default to the * Cypress VID/PID for the initial FW load, but we can initialize from any state. */ if (vm.count("init-device")) { uint16_t writevid = B200_VENDOR_ID; uint16_t writepid = B200_PRODUCT_ID; /* Now, initialize the device. */ // Added for testing purposes - not exposed if (vm.count("write-vid") && vm.count("write-pid")) { try { writevid = atoh(writevid_str); writepid = atoh(writepid_str); } catch (std::exception& e) { std::cerr << "Exception while parsing write VID and PID: " << e.what() << std::endl; return ~0; } } std::cout << "Writing VID and PID to EEPROM..." << std::endl << std::endl; if (write_and_verify_eeprom( b200, construct_eeprom_init_value_vector(writevid, writepid))) return -1; std::cout << "EEPROM initialized, resetting device..." << std::endl << std::endl; /* Reset the device! */ try { b200->reset_fx3(); } catch (const std::exception& e) { std::cerr << "Exception while resetting device: " << e.what() << std::endl; return -1; } std::cout << "Initialization Process Complete." << std::endl << std::endl; return 0; } uint8_t data_buffer[16]; memset(data_buffer, 0x0, sizeof(data_buffer)); if (vm.count("speed")) { uint8_t speed; try { speed = b200->get_usb_speed(); } catch (uhd::exception& e) { std::cerr << "Exception while getting USB speed: " << e.what() << std::endl; return -1; } std::cout << "Currently operating at USB " << (int)speed << std::endl; } if (vm.count("reset-device")) { try { b200->reset_fx3(); } catch (uhd::exception& e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return -1; } } else if (vm.count("reset-fpga")) { try { b200->set_fpga_reset_pin(true); } catch (uhd::exception& e) { std::cerr << "Exception while resetting FPGA: " << e.what() << std::endl; return -1; } } else if (vm.count("load-fpga")) { std::cout << "Loading FPGA image (" << fpga_file << ")" << std::endl; uint32_t fx3_state; try { fx3_state = b200->load_fpga(fpga_file); } // returns 0 on success, or FX3 state on error catch (uhd::exception& e) { std::cerr << "Exception while loading FPGA: " << e.what() << std::endl; return ~0; } if (fx3_state != 0) { std::cerr << std::flush << "Error loading FPGA. FX3 state (" << fx3_state << "): " << b200_iface::fx3_state_string(fx3_state) << std::endl; return ~0; } std::cout << "FPGA load complete, releasing USB interface..." << std::endl; } else if (vm.count("load-bootloader")) { if (bl_file.empty()) bl_file = uhd::find_image_path(B200_BL_FILE_NAME); if (bl_file.empty()) { std::cerr << "Bootloader image not found!" << std::endl; return -1; } if (!(fs::exists(bl_file))) { std::cerr << "Invalid filepath: " << bl_file << std::endl; return -1; } std::cout << "Loading Bootloader image (" << bl_file << ")" << std::endl; // In the upgrade case, we need to migrate the EEPROM data to a new // location before loading the bootloader // Use the signature to detect the old EEPROM layout auto signature = b200->read_eeprom(0x0, 0x0, 4); if (signature == OLD_EEPROM_SIGNATURE) { std::cout << "Old EEPROM detected. Upgrading EEPROM image to latest revision." << std::endl; // Read values that will be clobbered by the bootloader auto pidvid = b200->read_eeprom(0x00, 0x04, 4); uhd::byte_vector_t vidpid = {pidvid[2], pidvid[3], pidvid[0], pidvid[1]}; auto eeprom_data = b200->read_eeprom(0x04, 0xDC, 36); // Write in default header b200->write_eeprom( EEPROM_DATA_ADDR_HIGH_BYTE, EEPROM_DATA_HEADER_ADDR, EEPROM_DATA_HEADER); // Write back data to the device b200->write_eeprom( EEPROM_DATA_ADDR_HIGH_BYTE, EEPROM_DATA_VID_PID_ADDR, vidpid); b200->write_eeprom( EEPROM_DATA_ADDR_HIGH_BYTE, EEPROM_DATA_OLD_DATA_ADDR, eeprom_data); } uint32_t fx3_state; try { fx3_state = b200->load_bootloader(bl_file); } // returns 0 on success, or FX3 state on error catch (uhd::exception& e) { std::cerr << "Exception while loading bootloader: " << e.what() << std::endl; return EXIT_FAILURE; } if (fx3_state != 0) { std::cerr << std::flush << "Error loading bootloader. FX3 state (" << fx3_state << "): " << b200_iface::fx3_state_string(fx3_state) << std::endl; return EXIT_FAILURE; } std::cout << "Bootloader load complete, resetting device..." << std::endl; // reset the device try { b200->reset_fx3(); } catch (uhd::exception& e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return EXIT_FAILURE; } } else if (vm.count("query-bootloader")) { auto signature = b200->read_eeprom(0x0, 0x0, 4); if (signature != NEW_EEPROM_SIGNATURE) { std::cout << "No bootloader found on device" << std::endl; return EXIT_FAILURE; } std::cout << "Bootloader is present" << std::endl; } else if (vm.count("unload-bootloader")) { auto signature = b200->read_eeprom(0x0, 0x0, 4); if (signature != NEW_EEPROM_SIGNATURE) { std::cout << "No bootloader found on device" << std::endl; return EXIT_FAILURE; } auto vidpid = b200->read_eeprom( EEPROM_DATA_ADDR_HIGH_BYTE, EEPROM_DATA_VID_PID_ADDR, 4); auto eeprom_data = b200->read_eeprom( EEPROM_DATA_ADDR_HIGH_BYTE, EEPROM_DATA_OLD_DATA_ADDR, 36); uhd::byte_vector_t first_bl_record(OLD_EEPROM_SIGNATURE); first_bl_record.push_back(vidpid[2]); first_bl_record.push_back(vidpid[3]); first_bl_record.push_back(vidpid[0]); first_bl_record.push_back(vidpid[1]); if (write_and_verify_eeprom(b200, first_bl_record)) { return EXIT_FAILURE; } b200->write_eeprom(0x04, 0xDC, eeprom_data); std::cout << "Bootloader unload complete, resetting device..." << std::endl; // reset the device try { b200->reset_fx3(); } catch (uhd::exception& e) { std::cerr << "Exception while resetting FX3: " << e.what() << std::endl; return EXIT_FAILURE; } } std::cout << "Operation complete! I did it! I did it!" << std::endl; return 0; }