//
// Copyright 2010-2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
const static boost::uint16_t FX3_VID = 0x04b4;
const static boost::uint16_t FX3_DEFAULT_PID = 0x00f3;
const static boost::uint16_t FX3_REENUM_PID = 0x00f0;
const static boost::uint16_t B2XX_VID = 0x2500;
const static boost::uint16_t B2XX_PID = 0x0020;
const static boost::uint8_t VRT_VENDOR_OUT = (LIBUSB_REQUEST_TYPE_VENDOR
| LIBUSB_ENDPOINT_OUT);
const static boost::uint8_t VRT_VENDOR_IN = (LIBUSB_REQUEST_TYPE_VENDOR
| LIBUSB_ENDPOINT_IN);
const static boost::uint8_t FX3_FIRMWARE_LOAD = 0xA0;
const static boost::uint8_t B2XX_VREQ_FPGA_START = 0x02;
const static boost::uint8_t B2XX_VREQ_FPGA_DATA = 0x12;
const static boost::uint8_t B2XX_VREQ_SET_FPGA_HASH = 0x1C;
const static boost::uint8_t B2XX_VREQ_GET_FPGA_HASH = 0x1D;
const static boost::uint8_t B2XX_VREQ_FPGA_RESET = 0x62;
const static boost::uint8_t B2XX_VREQ_GET_USB = 0x80;
const static boost::uint8_t B2XX_VREQ_GET_STATUS = 0x83;
const static boost::uint8_t B2XX_VREQ_FX3_RESET = 0x99;
const static boost::uint8_t B2XX_VREQ_EEPROM_WRITE = 0xBA;
const static boost::uint8_t FX3_STATE_FPGA_READY = 0x00;
const static boost::uint8_t FX3_STATE_CONFIGURING_FPGA = 0x01;
const static boost::uint8_t FX3_STATE_BUSY = 0x02;
const static boost::uint8_t FX3_STATE_RUNNING = 0x03;
typedef boost::uint32_t hash_type;
typedef std::vector byte_vector_t;
namespace po = boost::program_options;
namespace fs = boost::filesystem;
//!used with lexical cast to parse a hex string
template struct to_hex{
T value;
operator T() const {return value;}
friend std::istream& operator>>(std::istream& in, to_hex& out){
in >> std::hex >> out.value;
return in;
}
};
//!parse hex-formatted ASCII text into an int
boost::uint16_t atoh(const std::string &string){
if (string.substr(0, 2) == "0x"){
return boost::lexical_cast >(string);
}
return boost::lexical_cast(string);
}
/*!
* Create a file hash
* The hash will be used to identify the loaded firmware and fpga image
* \param filename file used to generate hash value
* \return hash value in a size_t type
*/
static hash_type generate_hash(const char *filename)
{
std::ifstream file(filename);
if (not file){
std::cerr << std::string("cannot open input file ") + filename
<< std::endl;
}
size_t hash = 0;
char ch;
while (file.get(ch)) {
boost::hash_combine(hash, ch);
}
if (not file.eof()){
std::cerr << std::string("file error ") + filename << std::endl;
}
file.close();
return hash_type(hash);
}
/*!
* Verify checksum of a Intel HEX record
* \param record a line from an Intel HEX file
* \return true if record is valid, false otherwise
*/
bool checksum(std::string *record) {
size_t len = record->length();
unsigned int i;
unsigned char sum = 0;
unsigned int val;
for (i = 1; i < len; i += 2) {
std::istringstream(record->substr(i, 2)) >> std::hex >> val;
sum += val;
}
if (sum == 0)
return true;
else
return false;
}
/*!
* Parse Intel HEX record
*
* \param record a line from an Intel HEX file
* \param len output length of record
* \param addr output address
* \param type output type
* \param data output data
* \return true if record is sucessfully read, false on error
*/
bool parse_record(std::string *record, boost::uint16_t &len, boost::uint16_t &addr,
uint16_t &type, unsigned char* data) {
unsigned int i;
std::string _data;
unsigned int val;
if (record->substr(0, 1) != ":")
return false;
std::istringstream(record->substr(1, 2)) >> std::hex >> len;
std::istringstream(record->substr(3, 4)) >> std::hex >> addr;
std::istringstream(record->substr(7, 2)) >> std::hex >> type;
if (len > (2 * (record->length() - 9))) // sanity check to prevent buffer overrun
return false;
for (i = 0; i < len; i++) {
std::istringstream(record->substr(9 + 2 * i, 2)) >> std::hex >> val;
data[i] = (unsigned char) val;
}
return true;
}
/*!
* Write data to the FX3.
*
* \param dev_handle the libusb-1.0 device handle
* \param request the usb transfer request type
* \param value the USB bValue
* \param index the USB bIndex
* \param buff the data to write
* \param length the number of bytes to write
* \return the number of bytes written
*/
libusb_error fx3_control_write(libusb_device_handle *dev_handle, boost::uint8_t request,
boost::uint16_t value, boost::uint16_t index, unsigned char *buff,
boost::uint16_t length, boost::uint32_t timeout = 0) {
#if 0
if(DEBUG) {
std::cout << "Writing: <" << std::hex << std::setw(6) << std::showbase \
<< std::internal << std::setfill('0') << (int) request \
<< ", " << std::setw(6) << (int) VRT_VENDOR_OUT \
<< ", " << std::setw(6) << value \
<< ", " << std::setw(6) << index \
<< ", " << std::dec << std::setw(2) << length \
<< ">" << std::endl;
std::cout << "\t\tData: 0x " << std::noshowbase;
for(int count = 0; count < length; count++) {
std::cout << std::hex << std::setw(2) << (int) buff[count] << " ";
}
std::cout << std::showbase << std::endl;
}
#endif
return (libusb_error) libusb_control_transfer(dev_handle, VRT_VENDOR_OUT, request, \
value, index, buff, length, timeout);
}
/*!
* Read data from the FX3.
*
* \param dev_handle the libusb-1.0 device handle
* \param request the usb transfer request type
* \param value the USB bValue
* \param index the USB bIndex
* \param buff a buffer to store the read bytes to
* \param length the number of bytes to read
* \return the number of bytes read
*/
libusb_error fx3_control_read(libusb_device_handle *dev_handle, boost::uint8_t request,
boost::uint16_t value, boost::uint16_t index, unsigned char *buff,
boost::uint16_t length, boost::uint32_t timeout = 0) {
#if 0
if(DEBUG) {
std::cout << "Reading: <" << std::hex << std::setw(6) << std::showbase \
<< std::internal << std::setfill('0') << (int) request \
<< ", " << std::setw(6) << (int) VRT_VENDOR_IN \
<< ", " << std::setw(6) << value \
<< ", " << std::setw(6) << index \
<< ", " << std::dec << std::setw(2) << length \
<< ">" << std::endl << std::endl;
}
#endif
return (libusb_error) libusb_control_transfer(dev_handle, VRT_VENDOR_IN, request, \
value, index, buff, length, timeout);
}
void write_eeprom(libusb_device_handle *dev_handle, boost::uint8_t addr,
boost::uint8_t offset, const byte_vector_t &bytes) {
fx3_control_write(dev_handle, B2XX_VREQ_EEPROM_WRITE,
0, offset | (boost::uint16_t(addr) << 8),
(unsigned char *) &bytes[0],
bytes.size());
}
boost::uint8_t get_fx3_status(libusb_device_handle *dev_handle) {
unsigned char rx_data[1];
fx3_control_read(dev_handle, B2XX_VREQ_GET_STATUS, 0x00, 0x00, rx_data, 1);
return boost::lexical_cast(rx_data[0]);
}
void usrp_get_fpga_hash(libusb_device_handle *dev_handle, hash_type &hash) {
fx3_control_read(dev_handle, B2XX_VREQ_GET_FPGA_HASH, 0x00, 0x00,
(unsigned char*) &hash, 4, 500);
}
void usrp_set_fpga_hash(libusb_device_handle *dev_handle, hash_type hash) {
fx3_control_write(dev_handle, B2XX_VREQ_SET_FPGA_HASH, 0x00, 0x00,
(unsigned char*) &hash, 4);
}
boost::int32_t load_fpga(libusb_device_handle *dev_handle,
const std::string filestring) {
if (filestring.empty())
{
std::cerr << "load_fpga: input file is empty." << std::endl;
exit(-1);
}
boost::uint8_t fx3_state = 0;
const char *filename = filestring.c_str();
hash_type hash = generate_hash(filename);
hash_type loaded_hash; usrp_get_fpga_hash(dev_handle, loaded_hash);
if (hash == loaded_hash) return 0;
size_t file_size = 0;
{
std::ifstream file(filename, std::ios::in | std::ios::binary | std::ios::ate);
file_size = file.tellg();
}
std::ifstream file;
file.open(filename, std::ios::in | std::ios::binary);
if(!file.good()) {
std::cerr << "load_fpga: cannot open FPGA input file." << std::endl;
exit(-1);
}
do {
fx3_state = get_fx3_status(dev_handle);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
} while(fx3_state != FX3_STATE_FPGA_READY);
std::cout << "Loading FPGA image: " \
<< filestring << "..." << std::flush;
unsigned char out_buff[64];
memset(out_buff, 0x00, sizeof(out_buff));
fx3_control_write(dev_handle, B2XX_VREQ_FPGA_START, 0, 0, out_buff, 1, 1000);
do {
fx3_state = get_fx3_status(dev_handle);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
} while(fx3_state != FX3_STATE_CONFIGURING_FPGA);
size_t bytes_sent = 0;
while(!file.eof()) {
file.read((char *) out_buff, sizeof(out_buff));
const std::streamsize n = file.gcount();
if(n == 0) continue;
boost::uint16_t transfer_count = boost::uint16_t(n);
/* Send the data to the device. */
fx3_control_write(dev_handle, B2XX_VREQ_FPGA_DATA, 0, 0, out_buff,
transfer_count, 5000);
if (bytes_sent == 0) std::cout << " 0%" << std::flush;
const size_t percent_before = size_t((bytes_sent*100)/file_size);
bytes_sent += transfer_count;
const size_t percent_after = size_t((bytes_sent*100)/file_size);
if (percent_before/10 != percent_after/10) {
std::cout << "\b\b\b\b" << std::setw(3) << percent_after
<< "%" << std::flush;
}
}
file.close();
do {
fx3_state = get_fx3_status(dev_handle);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
} while(fx3_state != FX3_STATE_RUNNING);
usrp_set_fpga_hash(dev_handle, hash);
std::cout << "\b\b\b\b done" << std::endl;
return 0;
}
/*!
* Program the FX3 with a firmware file (Intel HEX format)
*
* \param dev_handle the libusb-1.0 device handle
* \param filestring the filename of the firmware file
* \return 0 for success, otherwise error code
*/
boost::int32_t fx3_load_firmware(libusb_device_handle *dev_handle, \
std::string filestring) {
if (filestring.empty())
{
std::cerr << "fx3_load_firmware: input file is empty." << std::endl;
exit(-1);
}
const char *filename = filestring.c_str();
/* Fields used in each USB control transfer. */
boost::uint16_t len = 0;
boost::uint16_t type = 0;
boost::uint16_t lower_address_bits = 0x0000;
unsigned char data[512];
/* Can be set by the Intel HEX record 0x04, used for all 0x00 records
* thereafter. Note this field takes the place of the 'index' parameter in
* libusb calls, and is necessary for FX3's 32-bit addressing. */
boost::uint16_t upper_address_bits = 0x0000;
std::ifstream file;
file.open(filename, std::ifstream::in);
if(!file.good()) {
std::cerr << "fx3_load_firmware: cannot open firmware input file"
<< std::endl;
exit(-1);
}
std::cout << "Loading firmware image: " \
<< filestring << "..." << std::flush;
while (!file.eof()) {
boost::int32_t ret = 0;
std::string record;
file >> record;
if (!(record.length() > 0))
continue;
/* Check for valid Intel HEX record. */
if (!checksum(&record) || !parse_record(&record, len, \
lower_address_bits, type, data)) {
std::cerr << "fx3_load_firmware: bad intel hex record checksum"
<< std::endl;
}
/* Type 0x00: Data. */
if (type == 0x00) {
ret = fx3_control_write(dev_handle, FX3_FIRMWARE_LOAD, \
lower_address_bits, upper_address_bits, data, len);
if (ret < 0) {
std::cerr << "usrp_load_firmware: usrp_control_write failed"
<< std::endl;
}
}
/* Type 0x01: EOF. */
else if (type == 0x01) {
if (lower_address_bits != 0x0000 || len != 0 ) {
std::cerr << "fx3_load_firmware: For EOF record, address must be 0, length must be 0." << std::endl;
}
/* Successful termination! */
file.close();
/* Let the system settle. */
boost::this_thread::sleep(boost::posix_time::milliseconds(1000));
return 0;
}
/* Type 0x04: Extended Linear Address Record. */
else if (type == 0x04) {
if (lower_address_bits != 0x0000 || len != 2 ) {
std::cerr << "fx3_load_firmware: For ELA record, address must be 0, length must be 2." << std::endl;
}
upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[1] & 0x00FF));
}
/* Type 0x05: Start Linear Address Record. */
else if (type == 0x05) {
if (lower_address_bits != 0x0000 || len != 4 ) {
std::cerr << "fx3_load_firmware: For SLA record, address must be 0, length must be 4." << std::endl;
}
/* The firmware load is complete. We now need to tell the CPU
* to jump to an execution address start point, now contained within
* the data field. Parse these address bits out, and then push the
* instruction. */
upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[1] & 0x00FF));
lower_address_bits = ((boost::uint16_t)((data[2] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[3] & 0x00FF));
fx3_control_write(dev_handle, FX3_FIRMWARE_LOAD, lower_address_bits, \
upper_address_bits, 0, 0);
std::cout << " done" << std::endl;
}
/* If we receive an unknown record type, error out. */
else {
std::cerr << "fx3_load_firmware: unsupported record type." << std::endl;
}
}
/* There was no valid EOF. */
std::cerr << "fx3_load_firmware: No EOF record found." << std::cout;
return ~0;
}
boost::int32_t main(boost::int32_t argc, char *argv[]) {
boost::uint16_t vid, pid;
std::string pid_str, vid_str, fw_file, fpga_file;
po::options_description desc("Allowed options");
desc.add_options()
("help,h", "help message")
("vid,v", po::value(&vid_str)->default_value("0x2500"),
"Specify VID of device to use.")
("pid,p", po::value(&pid_str)->default_value("0x0020"),
"Specify PID of device to use.")
("speed,S", "Read back the USB mode currently in use.")
("reset-device,D", "Reset the B2xx Device.")
("reset-fpga,F", "Reset the FPGA (does not require re-programming.")
("reset-usb,U", "Reset the USB subsystem on your host computer.")
("init-device,I", "Initialize a B2xx device.")
("load-fw,W", po::value(&fw_file)->default_value(""),
"Load a firmware (hex) file into the FX3.")
("load-fpga,L", po::value(&fpga_file)->default_value(""),
"Load a FPGA (bin) file into the FPGA.")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("help")){
std::cout << boost::format("B2xx Utilitiy Program %s") % desc << std::endl;
return ~0;
} else if (vm.count("reset-usb")) {
/* Okay, first, we need to discover what the path is to the ehci and
* xhci device files. */
std::set path_list;
path_list.insert("/sys/bus/pci/drivers/xhci-pci/");
path_list.insert("/sys/bus/pci/drivers/ehci-pci/");
path_list.insert("/sys/bus/pci/drivers/xhci_hcd/");
path_list.insert("/sys/bus/pci/drivers/ehci_hcd/");
/* Check each of the possible paths above to find which ones this system
* uses. */
for(std::set::iterator found = path_list.begin();
found != path_list.end(); ++found) {
if(fs::exists(*found)) {
fs::path devpath = *found;
std::set globbed;
/* Now, glob all of the files in the directory. */
fs::directory_iterator end_itr;
for(fs::directory_iterator itr(devpath); itr != end_itr; ++itr) {
globbed.insert((*itr).path());
}
/* Check each file path string to see if it is a device file. */
for(std::set::iterator it = globbed.begin();
it != globbed.end(); ++it) {
std::string file = fs::path((*it).filename()).string();
if(file.compare(0, 5, "0000:") == 0) {
/* Un-bind the device. */
std::fstream unbind((devpath.string() + "unbind").c_str(),
std::fstream::out);
unbind << file;
unbind.close();
/* Re-bind the device. */
std::cout << "Re-binding: " << file << " in "
<< devpath.string() << std::endl;
std::fstream bind((devpath.string() + "bind").c_str(),
std::fstream::out);
bind << file;
bind.close();
}
}
}
}
return 0;
}
try {
vid = atoh(vid_str);
} catch (std::exception const& e) {
std::cerr << std::flush << "Exception while parsing vid: "
<< e.what() << std::endl;
return ~0;
}
try {
pid = atoh(pid_str);
} catch (std::exception const& e) {
std::cerr << std::flush << "Exception while parsing pid: "
<< e.what() << std::endl;
return ~0;
}
/* Pointer to pointer of device, used to retrieve a list of devices. */
libusb_device **devs;
libusb_device_handle *dev_handle;
libusb_context *ctx = NULL;
libusb_error error_code;
libusb_init(&ctx);
libusb_set_debug(ctx, 3);
libusb_get_device_list(ctx, &devs);
/* If we are initializing the device, the VID/PID will default to the
* Cypress VID/PID for the initial FW load. */
if (vm.count("init-device")) {
dev_handle = libusb_open_device_with_vid_pid(ctx, FX3_VID,
FX3_DEFAULT_PID);
if(dev_handle == NULL) {
std::cerr << "Cannot open device with vid: " << vid << " and pid: "
<< pid << std::endl;
return -1;
} else { std::cout << "Uninitialized B2xx detected..." << std::flush; }
libusb_free_device_list(devs, 1);
/* Find out if kernel driver is attached, and if so, detach it. */
if(libusb_kernel_driver_active(dev_handle, 0) == 1) {
std::cout << " Competing Driver Identified... " << std::flush;
if(libusb_detach_kernel_driver(dev_handle, 0) == 0) {
std::cout << " Competing Driver Destroyed!" << std::flush;
}
}
libusb_claim_interface(dev_handle, 0);
std::cout << " Control of B2xx granted..." << std::endl << std::endl;
/* Load the FW. */
error_code = (libusb_error) fx3_load_firmware(dev_handle, fw_file);
if(error_code != 0) {
std::cerr << std::flush << "Error loading firmware. Error code: "
<< error_code << std::endl;
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return ~0;
}
/* Let the device re-enumerate. */
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
dev_handle = libusb_open_device_with_vid_pid(ctx, FX3_VID,
FX3_REENUM_PID);
if(dev_handle == NULL) {
std::cerr << "Cannot open device with vid: " << vid << " and pid: "
<< pid << std::endl;
return -1;
} else {
std::cout << "Detected in-progress init of B2xx..." << std::flush;
}
//libusb_free_device_list(devs, 1);
libusb_claim_interface(dev_handle, 0);
std::cout << " Reenumeration complete, Device claimed..."
<< std::endl;
/* Now, initialize the device. */
byte_vector_t bytes(8);
bytes[0] = 0x43;
bytes[1] = 0x59;
bytes[2] = 0x14;
bytes[3] = 0xB2;
bytes[4] = (B2XX_PID & 0xff);
bytes[5] = (B2XX_PID >> 8);
bytes[6] = (B2XX_VID & 0xff);
bytes[7] = (B2XX_VID >> 8);
write_eeprom(dev_handle, 0x0, 0x0, bytes);
std::cout << "EEPROM initialized, resetting device..."
<< std::endl << std::endl;
/* Reset the device! */
boost::uint8_t data_buffer[1];
fx3_control_write(dev_handle, B2XX_VREQ_FX3_RESET,
0x00, 0x00, data_buffer, 1, 5000);
std::cout << "Initialization Process Complete."
<< std::endl << std::endl;
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return 0;
}
dev_handle = libusb_open_device_with_vid_pid(ctx, vid, pid);
if(dev_handle == NULL) {
std::cerr << "Cannot open device with vid: " << vid << " and pid: "
<< pid << std::endl;
return -1;
} else { std::cout << "Reactor Core Online..." << std::flush; }
libusb_free_device_list(devs, 1);
/* Find out if kernel driver is attached, and if so, detach it. */
if(libusb_kernel_driver_active(dev_handle, 0) == 1) {
std::cout << " Competing Driver Identified... " << std::flush;
if(libusb_detach_kernel_driver(dev_handle, 0) == 0) {
std::cout << " Competing Driver Destroyed!" << std::flush;
}
}
/* Claim interface 0 of device. */
error_code = (libusb_error) libusb_claim_interface(dev_handle, 0);
std::cout << " All Systems Nominal..." << std::endl << std::endl;
boost::uint8_t data_buffer[16];
memset(data_buffer, 0x0, sizeof(data_buffer));
if (vm.count("speed")){
error_code = fx3_control_read(dev_handle, B2XX_VREQ_GET_USB,
0x00, 0x00, data_buffer, 1, 5000);
boost::uint8_t speed = boost::lexical_cast(data_buffer[0]);
std::cout << "Currently operating at USB " << (int) speed << std::endl;
} else if (vm.count("reset-device")) {
error_code = fx3_control_write(dev_handle, B2XX_VREQ_FX3_RESET,
0x00, 0x00, data_buffer, 1, 5000);
} else if (vm.count("reset-fpga")) {
error_code = fx3_control_write(dev_handle, B2XX_VREQ_FPGA_RESET,
0x00, 0x00, data_buffer, 1, 5000);
} else if (vm.count("load-fw")) {
error_code = (libusb_error) fx3_load_firmware(dev_handle, fw_file);
if(error_code != 0) {
std::cerr << std::flush << "Error loading firmware. Error code: "
<< error_code << std::endl;
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return ~0;
}
std::cout << "Firmware load complete, releasing USB interface..."
<< std::endl;
} else if (vm.count("load-fpga")) {
try {
error_code = (libusb_error) load_fpga(dev_handle, fpga_file);
} catch (std::exception const& e) {
std::cerr << std::flush << "Exception while loading FPGA: "
<< e.what() << std::endl;
if (error_code == 0)
error_code = LIBUSB_ERROR_OTHER;
}
if(error_code != 0) {
std::cerr << std::flush << "Error loading FPGA. Error code: "
<< error_code << std::endl;
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return ~0;
}
std::cout << "FPGA load complete, releasing USB interface..."
<< std::endl;
} else {
try {
std::cout << boost::format("B2xx Utilitiy Program %s") % desc << std::endl;
} catch (std::exception const& e) {}
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return ~0;
}
std::cout << std::endl << "Reactor Shutting Down..." << std::endl;
error_code = (libusb_error) libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
libusb_exit(ctx);
return 0;
}