// // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include "rfnoc_graph_mock_nodes.hpp" #include "rfnoc_mock_reg_iface.hpp" #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd::rfnoc; // Redeclare this here, since it's only defined outside of UHD_API noc_block_base::make_args_t::~make_args_t() = default; namespace { constexpr size_t DEFAULT_MTU = 8000; noc_block_base::make_args_ptr make_make_args(noc_id_t noc_id, const std::string& block_id, const size_t n_inputs, const size_t n_outputs, const std::string& tb_clock_name = CLOCK_KEY_GRAPH, const std::string& cp_clock_name = "MOCK_CLOCK") { auto make_args = std::make_unique(); make_args->noc_id = noc_id; make_args->num_input_ports = n_inputs; make_args->num_output_ports = n_outputs; make_args->mtu = DEFAULT_MTU; make_args->reg_iface = std::make_shared(); make_args->block_id = block_id; make_args->ctrlport_clk_iface = std::make_shared(cp_clock_name); make_args->tb_clk_iface = std::make_shared(tb_clock_name); make_args->tree = uhd::property_tree::make(); return make_args; } noc_block_base::sptr make_block(noc_block_base::make_args_ptr&& make_args) { try { auto block_factory_info = factory::get_block_factory(make_args->noc_id, ANY_DEVICE); return block_factory_info.factory_fn(std::move(make_args)); } catch (std::out_of_range&) { UHD_LOG_WARNING("TEST", "Skipping tests due to Windows linker misconfiguration that needs to be " "resolved."); exit(0); } } } // namespace BOOST_AUTO_TEST_CASE(test_null_block) { node_accessor_t node_accessor{}; constexpr size_t num_chans = 2; constexpr uint32_t nipc = 2; constexpr uint32_t item_width = 32; constexpr noc_id_t noc_id = 0x00000001; auto make_args = make_make_args(noc_id, "0/NullSrcSink#0", num_chans, num_chans); auto reg_iface = std::dynamic_pointer_cast(make_args->reg_iface); auto set_mem = [&](const uint32_t addr, const uint32_t data) { reg_iface->read_memory[addr] = data; }; auto get_mem = [&](const uint32_t addr) { return reg_iface->write_memory[addr]; }; auto copy_mem = [&](const uint32_t addr) { set_mem(addr, get_mem(addr)); }; set_mem(null_block_control::REG_CTRL_STATUS, (nipc << 24) | (item_width << 16)); auto test_null = std::dynamic_pointer_cast(make_block(std::move(make_args))); BOOST_REQUIRE(test_null); using uhd::stream_cmd_t; node_accessor.init_props(test_null.get()); uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); test_null->issue_stream_cmd(stream_cmd); stream_cmd.stream_mode = stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE; BOOST_REQUIRE_THROW(test_null->issue_stream_cmd(stream_cmd), uhd::runtime_error); constexpr uint64_t snk_count = 1000000000; constexpr uint64_t snk_count_pkts = 5; constexpr uint64_t src_count = 2323232323; constexpr uint64_t loop_count = 4242424242; set_mem(null_block_control::REG_SNK_LINE_CNT_LO, uhd::narrow_cast(snk_count & 0xFFFFFFFF)); set_mem(null_block_control::REG_SNK_LINE_CNT_HI, uhd::narrow_cast((snk_count >> 32) & 0xFFFFFFFF)); set_mem(null_block_control::REG_SNK_PKT_CNT_LO, uhd::narrow_cast(snk_count_pkts & 0xFFFFFFFF)); set_mem(null_block_control::REG_SNK_PKT_CNT_HI, uhd::narrow_cast((snk_count_pkts >> 32) & 0xFFFFFFFF)); set_mem(null_block_control::REG_SRC_LINE_CNT_LO, uhd::narrow_cast(src_count & 0xFFFFFFFF)); set_mem(null_block_control::REG_SRC_LINE_CNT_HI, uhd::narrow_cast((src_count >> 32) & 0xFFFFFFFF)); set_mem(null_block_control::REG_LOOP_LINE_CNT_LO, uhd::narrow_cast(loop_count & 0xFFFFFFFF)); set_mem(null_block_control::REG_LOOP_LINE_CNT_HI, uhd::narrow_cast((loop_count >> 32) & 0xFFFFFFFF)); BOOST_CHECK_EQUAL( test_null->get_count(null_block_control::SINK, null_block_control::LINES), snk_count); BOOST_CHECK_EQUAL( test_null->get_count(null_block_control::SINK, null_block_control::PACKETS), snk_count_pkts); BOOST_CHECK_EQUAL( test_null->get_count(null_block_control::SOURCE, null_block_control::LINES), src_count); BOOST_CHECK_EQUAL( test_null->get_count(null_block_control::LOOP, null_block_control::LINES), loop_count); constexpr uint32_t lpp = 3; constexpr uint32_t bpp = nipc * item_width / 8 * lpp; test_null->set_bytes_per_packet(bpp); copy_mem(null_block_control::REG_SRC_LINES_PER_PKT); copy_mem(null_block_control::REG_SRC_BYTES_PER_PKT); BOOST_CHECK_EQUAL(test_null->get_lines_per_packet(), lpp); BOOST_CHECK_EQUAL(test_null->get_bytes_per_packet(), bpp); auto sca = stream_cmd_action_info::make(stream_cmd_t::STREAM_MODE_START_CONTINUOUS); node_accessor.send_action(test_null.get(), {res_source_info::OUTPUT_EDGE, 0}, sca); BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x2); BOOST_REQUIRE_THROW(node_accessor.send_action( test_null.get(), {res_source_info::OUTPUT_EDGE, 1}, sca), uhd::runtime_error); BOOST_REQUIRE_THROW( node_accessor.send_action(test_null.get(), {res_source_info::INPUT_EDGE, 0}, sca), uhd::runtime_error); stream_cmd.stream_mode = stream_cmd_t::STREAM_MODE_START_CONTINUOUS; test_null->issue_stream_cmd(stream_cmd); BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x2); node_accessor.shutdown(test_null.get()); BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x0); test_null->issue_stream_cmd(stream_cmd); UHD_LOG_INFO("TEST", "Expected error message here ^^^"); // The last issue_stream_cmd should do nothing b/c we called shutdown BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x0); } BOOST_AUTO_TEST_CASE(test_ddc_block) { node_accessor_t node_accessor{}; constexpr uint32_t num_hb = 2; constexpr uint32_t max_cic = 128; constexpr size_t num_chans = 4; constexpr noc_id_t noc_id = DDC_BLOCK; constexpr int TEST_DECIM = 20; auto ddc_make_args = make_make_args(noc_id, "0/DDC#0", num_chans, num_chans); ddc_make_args->args = uhd::device_addr_t("foo=bar"); auto ddc_reg_iface = std::dynamic_pointer_cast(ddc_make_args->reg_iface); ddc_reg_iface->read_memory[ddc_block_control::RB_COMPAT_NUM] = (ddc_block_control::MAJOR_COMPAT << 16) | ddc_block_control::MINOR_COMPAT; ddc_reg_iface->read_memory[ddc_block_control::RB_NUM_HB] = num_hb; ddc_reg_iface->read_memory[ddc_block_control::RB_CIC_MAX_DECIM] = max_cic; auto test_ddc = make_block(std::move(ddc_make_args)); BOOST_REQUIRE(test_ddc); BOOST_CHECK_EQUAL(test_ddc->get_block_args().get("foo"), "bar"); node_accessor.init_props(test_ddc.get()); UHD_LOG_DEBUG("TEST", "Init done."); test_ddc->set_property("decim", TEST_DECIM, 0); BOOST_REQUIRE(ddc_reg_iface->write_memory.count(ddc_block_control::SR_DECIM_ADDR)); BOOST_CHECK_EQUAL( ddc_reg_iface->write_memory.at(ddc_block_control::SR_DECIM_ADDR), 2 << 8 | 5); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU); // Now plop it in a graph detail::graph_t graph{}; detail::graph_t::graph_edge_t edge_info; edge_info.src_port = 0; edge_info.dst_port = 0; edge_info.property_propagation_active = true; edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC; mock_terminator_t mock_source_term(1); mock_terminator_t mock_sink_term(1); UHD_LOG_INFO("TEST", "Priming mock source node props"); mock_source_term.set_edge_property( "type", "sc16", {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0}); constexpr size_t NEW_MTU = 4000; mock_source_term.set_edge_property( "mtu", NEW_MTU, {res_source_info::OUTPUT_EDGE, 0}); UHD_LOG_INFO("TEST", "Creating graph..."); graph.connect(&mock_source_term, test_ddc.get(), edge_info); graph.connect(test_ddc.get(), &mock_sink_term, edge_info); UHD_LOG_INFO("TEST", "Committing graph..."); graph.commit(); UHD_LOG_INFO("TEST", "Commit complete."); // We need to set the decimation again, because the rates will screw it // change it w.r.t. to the previous setting test_ddc->set_property("decim", TEST_DECIM, 0); BOOST_CHECK_EQUAL(test_ddc->get_property("decim", 0), TEST_DECIM); BOOST_CHECK(mock_source_term.get_edge_property( "samp_rate", {res_source_info::OUTPUT_EDGE, 0}) == mock_sink_term.get_edge_property( "samp_rate", {res_source_info::INPUT_EDGE, 0}) * TEST_DECIM); BOOST_CHECK(mock_sink_term.get_edge_property( "scaling", {res_source_info::INPUT_EDGE, 0}) != 1.0); UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate"); constexpr double TEST_FREQ = 1.0 / 8; test_ddc->set_property("freq", TEST_FREQ, 0); const uint32_t freq_word_1 = ddc_reg_iface->write_memory.at(ddc_block_control::SR_FREQ_ADDR); BOOST_REQUIRE(freq_word_1 != 0); UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)"); // Now this should change the freq word, but not the absolute frequency mock_source_term.set_edge_property( "samp_rate", 2.0, {res_source_info::OUTPUT_EDGE, 0}); const double freq_word_2 = ddc_reg_iface->write_memory.at(ddc_block_control::SR_FREQ_ADDR); // The frequency word is the phase increment, which will halve. We skirt // around fixpoint/floating point accuracy issues by using CLOSE. BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6); UHD_LOG_INFO("TEST", "Testing DDC MTU propagation"); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), NEW_MTU); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 0}), NEW_MTU); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 1}), DEFAULT_MTU); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 1}), DEFAULT_MTU); mock_source_term.set_edge_property( "mtu", NEW_MTU / 2, {res_source_info::OUTPUT_EDGE, 0}); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), NEW_MTU / 2); BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 0}), NEW_MTU / 2); // Now reset the props using set_properties test_ddc->set_properties(uhd::device_addr_t("decim=1,freq=0.0,foo=bar"), 0); BOOST_CHECK_EQUAL(test_ddc->get_property("decim", 0), 1); BOOST_CHECK_EQUAL(test_ddc->get_property("freq", 0), 0.0); } BOOST_AUTO_TEST_CASE(test_duc_block) { node_accessor_t node_accessor{}; constexpr uint32_t num_hb = 2; constexpr uint32_t max_cic = 128; constexpr size_t num_chans = 4; constexpr noc_id_t noc_id = DUC_BLOCK; constexpr int TEST_INTERP = 20; // 2 halfbands, CIC==5 auto duc_make_args = make_make_args(noc_id, "0/DUC#0", num_chans, num_chans); duc_make_args->args = uhd::device_addr_t(); auto duc_reg_iface = std::dynamic_pointer_cast(duc_make_args->reg_iface); duc_reg_iface->read_memory[duc_block_control::RB_COMPAT_NUM] = (duc_block_control::MAJOR_COMPAT << 16) | duc_block_control::MINOR_COMPAT; duc_reg_iface->read_memory[duc_block_control::RB_NUM_HB] = num_hb; duc_reg_iface->read_memory[duc_block_control::RB_CIC_MAX_INTERP] = max_cic; auto test_duc = make_block(std::move(duc_make_args)); BOOST_REQUIRE(test_duc); node_accessor.init_props(test_duc.get()); UHD_LOG_DEBUG("TEST", "Init done."); test_duc->set_property("interp", TEST_INTERP, 0); BOOST_REQUIRE(duc_reg_iface->write_memory.count(duc_block_control::SR_INTERP_ADDR)); BOOST_CHECK_EQUAL( duc_reg_iface->write_memory.at(duc_block_control::SR_INTERP_ADDR), 2 << 8 | 5); BOOST_CHECK_EQUAL(test_duc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU); // Now plop it in a graph detail::graph_t graph{}; detail::graph_t::graph_edge_t edge_info; edge_info.src_port = 0; edge_info.dst_port = 0; edge_info.property_propagation_active = true; edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC; mock_terminator_t mock_source_term(1, {ACTION_KEY_STREAM_CMD}); mock_terminator_t mock_sink_term(1, {ACTION_KEY_STREAM_CMD}); UHD_LOG_INFO("TEST", "Priming mock source node props"); mock_source_term.set_edge_property( "type", "sc16", {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0}); UHD_LOG_INFO("TEST", "Priming mock sink node props"); mock_sink_term.set_edge_property( "type", "sc16", {res_source_info::INPUT_EDGE, 0}); mock_sink_term.set_edge_property( "scaling", 1.0, {res_source_info::INPUT_EDGE, 0}); mock_sink_term.set_edge_property( "samp_rate", 1.0, {res_source_info::INPUT_EDGE, 0}); UHD_LOG_INFO("TEST", "Creating graph..."); graph.connect(&mock_source_term, test_duc.get(), edge_info); graph.connect(test_duc.get(), &mock_sink_term, edge_info); UHD_LOG_INFO("TEST", "Committing graph..."); graph.commit(); UHD_LOG_INFO("TEST", "Commit complete."); // We need to set the interpation again, because the rates will screw it // change it w.r.t. to the previous setting test_duc->set_property("interp", TEST_INTERP, 0); BOOST_CHECK_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); BOOST_CHECK(mock_source_term.get_edge_property( "samp_rate", {res_source_info::OUTPUT_EDGE, 0}) * TEST_INTERP == mock_sink_term.get_edge_property( "samp_rate", {res_source_info::INPUT_EDGE, 0})); const double initial_input_scaling = mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0}); const double initial_output_scaling = mock_sink_term.get_edge_property( "scaling", {res_source_info::INPUT_EDGE, 0}); // Our chosen interpolation value will cause some scaling issues, so // this value needs to be off from 1.0 BOOST_CHECK(initial_input_scaling != 1.0); BOOST_CHECK(initial_output_scaling == 1.0); // The DUC will not let us set the scaling on its input, so the following // call to set property should have no effect mock_source_term.set_edge_property( "scaling", 42.0, {res_source_info::OUTPUT_EDGE, 0}); BOOST_CHECK(initial_input_scaling == mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0})); BOOST_CHECK(initial_output_scaling == mock_sink_term.get_edge_property( "scaling", {res_source_info::INPUT_EDGE, 0})); // However, if we change the scaling on the DUC's output, that will // propagate to its input UHD_LOG_INFO("TEST", "Testing doubling the output scaling..."); mock_sink_term.set_edge_property( "scaling", 2.0, {res_source_info::INPUT_EDGE, 0}); const double doubled_input_scaling = mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0}); BOOST_CHECK_EQUAL(doubled_input_scaling, 2 * initial_input_scaling); UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate"); constexpr double TEST_FREQ = 1.0 / 8; test_duc->set_property("freq", TEST_FREQ, 0); const uint32_t freq_word_1 = duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); BOOST_REQUIRE(freq_word_1 != 0); UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)"); // Now this should change the freq word, but not the absolute frequency mock_sink_term.set_edge_property("samp_rate", 2 * mock_sink_term.get_edge_property( "samp_rate", {res_source_info::INPUT_EDGE, 0}), {res_source_info::INPUT_EDGE, 0}); const double freq_word_2 = duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); // The frequency word is the phase increment, which will halve. We skirt // around fixpoint/floating point accuracy issues by using CLOSE. BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6); // Reset the interpolation test_duc->set_property("interp", TEST_INTERP, 0); BOOST_REQUIRE_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); UHD_LOG_INFO("TEST", "DUC: Testing action forwarding"); auto new_stream_cmd_action = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); new_stream_cmd_action->stream_cmd.num_samps = 1000; node_accessor.post_action( &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action); BOOST_REQUIRE(!mock_source_term.received_actions.empty()); auto stream_cmd_recv_by_src = std::dynamic_pointer_cast( mock_source_term.received_actions.back()); BOOST_CHECK(stream_cmd_recv_by_src); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src->stream_cmd.num_samps, 1000 / TEST_INTERP); auto new_stream_cmd_action2 = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); node_accessor.post_action( &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action2); BOOST_REQUIRE(!mock_source_term.received_actions.empty()); auto stream_cmd_recv_by_src2 = std::dynamic_pointer_cast( mock_source_term.received_actions.back()); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src2->stream_cmd.stream_mode, uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); auto new_stream_cmd_action3 = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); new_stream_cmd_action3->stream_cmd.num_samps = 100; node_accessor.post_action( &mock_source_term, {res_source_info::OUTPUT_EDGE, 0}, new_stream_cmd_action3); BOOST_REQUIRE(!mock_sink_term.received_actions.empty()); auto stream_cmd_recv_by_src3 = std::dynamic_pointer_cast( mock_sink_term.received_actions.back()); BOOST_CHECK(stream_cmd_recv_by_src3); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src3->stream_cmd.num_samps, 100 * TEST_INTERP); }