// // Copyright 2020 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include "../rfnoc_graph_mock_nodes.hpp" #include #include #include #include #include #include #include #include #include using namespace uhd::rfnoc; // Redeclare this here, since it's only defined outside of UHD_API noc_block_base::make_args_t::~make_args_t() = default; namespace { constexpr size_t DEFAULT_MTU = 8000; } // namespace BOOST_AUTO_TEST_CASE(test_duc_block) { node_accessor_t node_accessor{}; constexpr uint32_t num_hb = 2; constexpr uint32_t max_cic = 128; constexpr size_t num_chans = 4; constexpr noc_id_t noc_id = DUC_BLOCK; constexpr int TEST_INTERP = 20; // 2 halfbands, CIC==5 auto block_container = get_mock_block(noc_id, num_chans, num_chans); auto& duc_reg_iface = block_container.reg_iface; duc_reg_iface->read_memory[duc_block_control::RB_COMPAT_NUM] = (duc_block_control::MAJOR_COMPAT << 16) | duc_block_control::MINOR_COMPAT; duc_reg_iface->read_memory[duc_block_control::RB_NUM_HB] = num_hb; duc_reg_iface->read_memory[duc_block_control::RB_CIC_MAX_INTERP] = max_cic; auto test_duc = block_container.get_block(); BOOST_REQUIRE(test_duc); node_accessor.init_props(test_duc.get()); UHD_LOG_DEBUG("TEST", "Init done."); test_duc->set_property("interp", TEST_INTERP, 0); BOOST_REQUIRE(duc_reg_iface->write_memory.count(duc_block_control::SR_INTERP_ADDR)); BOOST_CHECK_EQUAL( duc_reg_iface->write_memory.at(duc_block_control::SR_INTERP_ADDR), 2 << 8 | 5); BOOST_CHECK_EQUAL(test_duc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU); // Now plop it in a graph detail::graph_t graph{}; detail::graph_t::graph_edge_t edge_info; edge_info.src_port = 0; edge_info.dst_port = 0; edge_info.property_propagation_active = true; edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC; mock_terminator_t mock_source_term(1, {ACTION_KEY_STREAM_CMD}); mock_terminator_t mock_sink_term(1, {ACTION_KEY_STREAM_CMD}); UHD_LOG_INFO("TEST", "Priming mock source node props"); mock_source_term.set_edge_property( "type", "sc16", {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0}); mock_source_term.set_edge_property( "samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0}); UHD_LOG_INFO("TEST", "Priming mock sink node props"); mock_sink_term.set_edge_property( "type", "sc16", {res_source_info::INPUT_EDGE, 0}); mock_sink_term.set_edge_property( "scaling", 1.0, {res_source_info::INPUT_EDGE, 0}); mock_sink_term.set_edge_property( "samp_rate", 1.0, {res_source_info::INPUT_EDGE, 0}); UHD_LOG_INFO("TEST", "Creating graph..."); graph.connect(&mock_source_term, test_duc.get(), edge_info); graph.connect(test_duc.get(), &mock_sink_term, edge_info); UHD_LOG_INFO("TEST", "Committing graph..."); graph.commit(); UHD_LOG_INFO("TEST", "Commit complete."); // We need to set the interpation again, because the rates will screw it // change it w.r.t. to the previous setting test_duc->set_property("interp", TEST_INTERP, 0); BOOST_CHECK_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); BOOST_CHECK(mock_source_term.get_edge_property( "samp_rate", {res_source_info::OUTPUT_EDGE, 0}) * TEST_INTERP == mock_sink_term.get_edge_property( "samp_rate", {res_source_info::INPUT_EDGE, 0})); const double initial_input_scaling = mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0}); const double initial_output_scaling = mock_sink_term.get_edge_property( "scaling", {res_source_info::INPUT_EDGE, 0}); // Our chosen interpolation value will cause some scaling issues, so // this value needs to be off from 1.0 BOOST_CHECK(initial_input_scaling != 1.0); BOOST_CHECK(initial_output_scaling == 1.0); // The DUC will not let us set the scaling on its input, so the following // call to set property should have no effect mock_source_term.set_edge_property( "scaling", 42.0, {res_source_info::OUTPUT_EDGE, 0}); BOOST_CHECK(initial_input_scaling == mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0})); BOOST_CHECK(initial_output_scaling == mock_sink_term.get_edge_property( "scaling", {res_source_info::INPUT_EDGE, 0})); // However, if we change the scaling on the DUC's output, that will // propagate to its input UHD_LOG_INFO("TEST", "Testing doubling the output scaling..."); mock_sink_term.set_edge_property( "scaling", 2.0, {res_source_info::INPUT_EDGE, 0}); const double doubled_input_scaling = mock_source_term.get_edge_property( "scaling", {res_source_info::OUTPUT_EDGE, 0}); BOOST_CHECK_EQUAL(doubled_input_scaling, 2 * initial_input_scaling); UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate"); constexpr double TEST_FREQ = 1.0 / 8; test_duc->set_property("freq", TEST_FREQ, 0); const uint32_t freq_word_1 = duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); BOOST_REQUIRE(freq_word_1 != 0); UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)"); // Now this should change the freq word, but not the absolute frequency mock_sink_term.set_edge_property("samp_rate", 2 * mock_sink_term.get_edge_property( "samp_rate", {res_source_info::INPUT_EDGE, 0}), {res_source_info::INPUT_EDGE, 0}); const double freq_word_2 = duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); // The frequency word is the phase increment, which will halve. We skirt // around fixpoint/floating point accuracy issues by using CLOSE. BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6); // Reset the interpolation test_duc->set_property("interp", TEST_INTERP, 0); BOOST_REQUIRE_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); UHD_LOG_INFO("TEST", "DUC: Testing action forwarding"); auto new_stream_cmd_action = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); new_stream_cmd_action->stream_cmd.num_samps = 1000; node_accessor.post_action( &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action); BOOST_REQUIRE(!mock_source_term.received_actions.empty()); auto stream_cmd_recv_by_src = std::dynamic_pointer_cast( mock_source_term.received_actions.back()); BOOST_CHECK(stream_cmd_recv_by_src); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src->stream_cmd.num_samps, 1000 / TEST_INTERP); auto new_stream_cmd_action2 = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); node_accessor.post_action( &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action2); BOOST_REQUIRE(!mock_source_term.received_actions.empty()); auto stream_cmd_recv_by_src2 = std::dynamic_pointer_cast( mock_source_term.received_actions.back()); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src2->stream_cmd.stream_mode, uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); auto new_stream_cmd_action3 = stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); new_stream_cmd_action3->stream_cmd.num_samps = 100; node_accessor.post_action( &mock_source_term, {res_source_info::OUTPUT_EDGE, 0}, new_stream_cmd_action3); BOOST_REQUIRE(!mock_sink_term.received_actions.empty()); auto stream_cmd_recv_by_src3 = std::dynamic_pointer_cast( mock_sink_term.received_actions.back()); BOOST_CHECK(stream_cmd_recv_by_src3); BOOST_CHECK_EQUAL(stream_cmd_recv_by_src3->stream_cmd.num_samps, 100 * TEST_INTERP); }