// // Copyright 2011-2012 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include // NOTE: MUST be included before to // work around a bug in Boost 1.65. #include #include #include #include #include #include #include #include #include using namespace uhd; // typedefs for complex types typedef std::complex sc16_t; typedef std::complex fc32_t; typedef std::complex fc64_t; static constexpr size_t BENCHMARK_NSAMPS = 8 * 1024 * 1024; static constexpr size_t BENCHMARK_NITERS = 4; // Holds performance information about a conversion run struct benchmark_result { convert::id_type id; uhd::convert::priority_type prio; double elapsed_ns; size_t nsamps; }; // List of priority types. This must be manually kept in sync with whatever is // defined in convert_common.hpp const std::array CONV_PRIO_TYPES{-1, 0, 1, 2, 3}; // Use this to create a converter with fixed prio in a test case. If prio does // not exist, we simply exit the test case. That's normal. #define GET_CONVERTER_SAFE(conv_name, id, prio) \ convert::converter::sptr conv_name; \ try { \ conv_name = convert::get_converter(id, prio)(); \ } catch (uhd::key_error&) { \ return; \ } // Shorthand for defining a test case that tests all prios. Creates a variable // 'conv_prio_type' #define MULTI_CONVERTER_TEST_CASE(test_name) \ BOOST_DATA_TEST_CASE(test_name, CONV_PRIO_TYPES, conv_prio_type) #define MY_CHECK_CLOSE(a, b, f) \ { \ static bool error_encountered = false; \ if(!error_encountered && (std::abs((a) - (b)) >= f)) { \ BOOST_ERROR( \ "\n\t" << #a << " (" << (a) << ") error " << #b << " (" << (b) << ")"); \ error_encountered = true; \ } \ } // Given a converter ID describing a conversion from input type to // output type, return the 'reverse' converter ID from output type to // input type static convert::id_type reverse_converter(const convert::id_type& in) { convert::id_type out = in; std::swap(out.input_format, out.output_format); std::swap(out.num_inputs, out.num_outputs); return out; } /*********************************************************************** * Loopback runner: * convert input buffer into intermediate buffer * convert intermediate buffer into output buffer * optionally collect benchmark data **********************************************************************/ template static void loopback(size_t nsamps, convert::id_type& in_id, convert::id_type& out_id, const Range& input, Range& output, const int prio_in, const int prio_out, std::vector* benchmark_data = nullptr) { // make this buffer large enough for all test types std::vector interm(nsamps); std::vector input0{&input[0]}, input1{&interm[0]}; std::vector output0{&interm[0]}, output1{&output[0]}; // convert to intermediate type convert::converter::sptr c0 = convert::get_converter(in_id, prio_in)(); c0->set_scalar(32767.); if(benchmark_data) { const auto start_time = std::chrono::steady_clock::now(); c0->conv(input0, output0, nsamps); const auto end_time = std::chrono::steady_clock::now(); const std::chrono::duration elapsed_in2out = end_time - start_time; benchmark_data->push_back({in_id, prio_in, elapsed_in2out.count(), nsamps}); } else { c0->conv(input0, output0, nsamps); } // convert back to host type convert::converter::sptr c1 = convert::get_converter(out_id, prio_out)(); c1->set_scalar(1 / 32767.); if(benchmark_data) { const auto start_time = std::chrono::steady_clock::now(); c1->conv(input1, output1, nsamps); const auto end_time = std::chrono::steady_clock::now(); const std::chrono::duration elapsed_out2in = end_time - start_time; benchmark_data->push_back({out_id, prio_out, elapsed_out2in.count(), nsamps}); } else { c1->conv(input1, output1, nsamps); } } // Use this to call the loopback runner from a test so that missing prio won't // become an issue #define CALL_LOOPBACK_SAFE(...) \ try { \ loopback(__VA_ARGS__); \ } catch (uhd::key_error&) { \ return; \ } // Iterates over a collection of individual benchmark results, collecting // the results from multiple runs with the same converter ID and priority // and prints out the results static void collate_benchmark_results(std::vector benchmarks) { while(!benchmarks.empty()) { // Get the first entry from the per-iteration runs struct benchmark_result result = *(benchmarks.begin()); // Remove that entry from the list, and look for other entries in // the list that have the same converter and priority auto b_iter = benchmarks.erase(benchmarks.begin()); while(b_iter != benchmarks.end()) { if(b_iter->id == result.id && b_iter->prio == result.prio) { // If a match is found, accumulate the elapsed time and // number of samples result.elapsed_ns += b_iter->elapsed_ns; result.nsamps += b_iter->nsamps; // And then remove it from the list b_iter = benchmarks.erase(b_iter); } else { // Not a match; move on b_iter++; } } double ns_per_sample = result.elapsed_ns / result.nsamps; std::cout << "For converter " << result.id.to_string() << " prio " << result.prio << ": " << ns_per_sample << " ns/sample" << std::endl; } } /*********************************************************************** * Run converter test code under a benchmark * This overload takes a prio, for the MULTI_CONVERTER_TEST_CASES which * receive it as a parameter **********************************************************************/ template static void benchmark_converter( convert::id_type id, uhd::convert::priority_type prio, ConverterFunction&& converter_fn) { std::vector benchmarks; for(size_t iter = 0; iter < BENCHMARK_NITERS; iter++) { std::vector benchmarks_iter; converter_fn(BENCHMARK_NSAMPS, id, prio, &benchmarks_iter); // Detect if the benchmark didn't run because the converter type // with the given priority wasn't found; if that's the case, bail // on the test case if(benchmarks_iter.empty()) { return; } // Save the results for this iteration std::copy(benchmarks_iter.begin(), benchmarks_iter.end(), std::back_inserter(benchmarks)); } collate_benchmark_results(benchmarks); } /*********************************************************************** * Run converter test code under a benchmark * This overload does not take a prio, for the converter functions which * iterate them automatically (the test_convert_types_for_floats variant) **********************************************************************/ template static void benchmark_converter( convert::id_type id, ConverterFunction&& converter_fn) { std::vector benchmarks; for(size_t iter = 0; iter < BENCHMARK_NITERS; iter++) { std::vector benchmarks_iter; converter_fn(BENCHMARK_NSAMPS, id, &benchmarks_iter); // Detect if the benchmark didn't run because the converter type // with the given priority wasn't found; if that's the case, bail // on the test case if(benchmarks_iter.empty()) { return; } // Save the results for this iteration std::copy(benchmarks_iter.begin(), benchmarks_iter.end(), std::back_inserter(benchmarks)); } collate_benchmark_results(benchmarks); } /*********************************************************************** * Test short conversion **********************************************************************/ static void test_convert_types_sc16(size_t nsamps, convert::id_type& id, uhd::convert::priority_type prio, const int extra_div = 1, int mask = 0xffff, std::vector* benchmark_data = nullptr) { // fill the input samples std::vector input(nsamps), output(nsamps); for (sc16_t& in : input) { in = sc16_t( short((float((std::rand()) / (double(RAND_MAX) / 2)) - 1) * 32767 / extra_div) & mask, short((float((std::rand()) / (double(RAND_MAX) / 2)) - 1) * 32767 / extra_div) & mask); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio, prio, benchmark_data); if(!benchmark_data) { BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } } MULTI_CONVERTER_TEST_CASE(test_convert_types_be_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_be_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 1, 0xffff, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_le_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_le_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 1, 0xffff, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_chdr_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_chdr_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 1, 0xffff, benchmarks); }); } /*********************************************************************** * Test float conversion **********************************************************************/ template static void test_convert_types_for_floats(size_t nsamps, convert::id_type& id, const double extra_scale = 1.0, std::vector* benchmark_data = nullptr) { typedef typename data_type::value_type value_type; // fill the input samples std::vector input(nsamps), output(nsamps); for (data_type& in : input) { in = data_type( ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale), ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale)); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); // make a list of all prio: best/generic combos typedef std::pair int_pair_t; const std::vector prios{ int_pair_t(0, 0), int_pair_t(-1, 0), int_pair_t(0, -1), int_pair_t(-1, -1)}; // loopback foreach prio combo (generic vs best) for (const auto& prio : prios) { CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio.first, prio.second, benchmark_data); for (size_t i = 0; i < nsamps && (!benchmark_data); i++) { MY_CHECK_CLOSE(input[i].real(), output[i].real(), value_type(1. / (1 << 14))); MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), value_type(1. / (1 << 14))); } } } template static void test_convert_types_for_floats_with_saturation(size_t nsamps, convert::id_type& id, const double extra_scale = 1.0) { typedef typename data_type::value_type value_type; // fill the input samples std::vector input(nsamps), output(nsamps), expected_output(nsamps); for (size_t sample_count = 0; sample_count < nsamps; sample_count++) { value_type real_data = ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale); value_type imag_data = ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale); value_type expected_real_data = real_data; value_type expected_imag_data = imag_data; if(sample_count & 1) { // To ensure that some samples are out of range and thus should be // saturated, every alternating sample's real and imaginary values // are pushed outside of the [-1..1] range. real_data = (real_data < 0.0) ? real_data - 1.0 : real_data + 1.0; imag_data = (imag_data < 0.0) ? imag_data - 1.0 : imag_data + 1.0; // The expected output values after loopback for these samples are // -1.0 or 1.0. expected_real_data = (real_data < 0.0) ? -1.0 : 1.0; expected_imag_data = (imag_data < 0.0) ? -1.0 : 1.0; } input[sample_count] = data_type(real_data, imag_data); expected_output[sample_count] = data_type(expected_real_data, expected_imag_data); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); // make a list of all prio: best/generic combos typedef std::pair int_pair_t; const std::vector prios{ int_pair_t(0, 0), int_pair_t(-1, 0), int_pair_t(0, -1), int_pair_t(-1, -1)}; // loopback foreach prio combo (generic vs best) for (const auto& prio : prios) { CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio.first, prio.second); for (size_t i = 0; i < nsamps; i++) { MY_CHECK_CLOSE(expected_output[i].real(), output[i].real(), value_type(1. / (1 << 14))); MY_CHECK_CLOSE(expected_output[i].imag(), output[i].imag(), value_type(1. / (1 << 14))); } } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32_with_saturation) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_be_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32_with_saturation) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_le_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc32_with_saturation) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_chdr_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc64_with_saturation) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_be_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc64_with_saturation) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_le_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc64_with_saturation) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats_with_saturation(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_chdr_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } /*********************************************************************** * Test float to/from sc12 conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_le_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 16); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_le_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_le"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 16, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_be_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 16); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_be_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_be"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 16, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_le_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc12_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type, 1, 0xfff0); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_le_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc12_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 1, 0xfff0, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_be_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc12_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type, 1, 0xfff0); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_be_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc12_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 1, 0xfff0, benchmarks); }); } /*********************************************************************** * Test float to/from fc32 conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_le_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_le"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_be_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_be"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_with_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_fc32_with_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_chdr"; id.num_outputs = 1; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1.0, benchmarks); }); } /*********************************************************************** * Test sc8 conversions **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_fc64_and_sc8) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 256); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_fc64_and_sc8) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc8_item32_le"; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 256, benchmarks); }); id.output_format = "sc8_item32_be"; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 256, benchmarks); }); } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_and_sc8) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats(nsamps, id, 1. / 256); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) BOOST_AUTO_TEST_CASE(benchmark_convert_types_fc32_and_sc8) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc8_item32_le"; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 256, benchmarks); }); // try various lengths to test edge cases id.output_format = "sc8_item32_be"; benchmark_converter(id, [](size_t nsamps, convert::id_type id, std::vector* benchmarks) { test_convert_types_for_floats(nsamps, id, 1. / 256, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_sc16_and_sc8) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type, 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, conv_prio_type, 256); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_sc16_and_sc8) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc8_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 256, 0xffff, benchmarks); }); id.output_format = "sc8_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_sc16(nsamps, id, prio, 256, 0xffff, benchmarks); }); } /*********************************************************************** * Test u8 conversion **********************************************************************/ static void test_convert_types_u8( size_t nsamps, convert::id_type& id, uhd::convert::priority_type prio, std::vector* benchmark_data = nullptr) { // fill the input samples std::vector input(nsamps), output(nsamps); for (uint8_t& in : input) { in = uint8_t(std::rand() & 0xFF); } // uint32_t d = 48; // for(uint8_t &in: input) in = d++; // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio, prio, benchmark_data); if(!benchmark_data) { BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } } MULTI_CONVERTER_TEST_CASE(test_convert_types_u8_and_u8) { convert::id_type id; id.input_format = "u8"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "u8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id, conv_prio_type); } // try various lengths to test edge cases id.output_format = "u8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_u8_and_u8) { convert::id_type id; id.input_format = "u8"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "u8_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_u8(nsamps, id, prio, benchmarks); }); // try various lengths to test edge cases id.output_format = "u8_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_u8(nsamps, id, prio, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_u8_and_u8_chdr) { convert::id_type id; id.input_format = "u8"; id.output_format = "u8_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_u8_and_u8_chdr) { convert::id_type id; id.input_format = "u8"; id.output_format = "u8_chdr"; id.num_inputs = 1; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_u8(nsamps, id, prio, benchmarks); }); } /*********************************************************************** * Test s8 conversion **********************************************************************/ static void test_convert_types_s8( size_t nsamps, convert::id_type& id, uhd::convert::priority_type prio, std::vector* benchmark_data = nullptr) { // fill the input samples std::vector input(nsamps), output(nsamps); for (int8_t& in : input) { in = int8_t(std::rand() & 0xFF); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio, prio, benchmark_data); if(!benchmark_data) { BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } } MULTI_CONVERTER_TEST_CASE(test_convert_types_s8_and_s8) { convert::id_type id; id.input_format = "s8"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "s8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id, conv_prio_type); } // try various lengths to test edge cases id.output_format = "s8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_s8_and_s8) { convert::id_type id; id.input_format = "s8"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "s8_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s8(nsamps, id, prio, benchmarks); }); // try various lengths to test edge cases id.output_format = "s8_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s8(nsamps, id, prio, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_s8_and_s8_chdr) { convert::id_type id; id.input_format = "s8"; id.output_format = "s8_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_s8_and_s8_chdr) { convert::id_type id; id.input_format = "s8"; id.output_format = "s8_chdr"; id.num_inputs = 1; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s8(nsamps, id, prio, benchmarks); }); } /*********************************************************************** * Test s16 conversion **********************************************************************/ static void test_convert_types_s16( size_t nsamps, convert::id_type& id, uhd::convert::priority_type prio, std::vector* benchmark_data = nullptr) { // fill the input samples std::vector input(nsamps), output(nsamps); for (int16_t& in : input) { in = int16_t(std::rand() & 0xFFFF); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio, prio, benchmark_data); if(!benchmark_data) { BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } } MULTI_CONVERTER_TEST_CASE(test_convert_types_s16_and_s16) { convert::id_type id; id.input_format = "s16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "s16_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id, conv_prio_type); } // try various lengths to test edge cases id.output_format = "s16_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_s16_and_s16) { convert::id_type id; id.input_format = "s16"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "s16_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s16(nsamps, id, prio, benchmarks); }); // try various lengths to test edge cases id.output_format = "s16_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s16(nsamps, id, prio, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_s16_and_s16_chdr) { convert::id_type id; id.input_format = "s16"; id.output_format = "s16_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_s16_and_s16_chdr) { convert::id_type id; id.input_format = "s16"; id.output_format = "s16_chdr"; id.num_inputs = 1; id.num_outputs = 1; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_s16(nsamps, id, prio, benchmarks); }); } /*********************************************************************** * Test fc32 -> fc32 conversion **********************************************************************/ static void test_convert_types_fc32( size_t nsamps, convert::id_type& id, uhd::convert::priority_type prio, std::vector* benchmark_data = nullptr) { // fill the input samples std::vector> input(nsamps), output(nsamps); for (fc32_t& in : input) { in = fc32_t((std::rand() / float(RAND_MAX / 2)) - 1, (std::rand() / float(RAND_MAX / 2)) - 1); } // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = reverse_converter(id); CALL_LOOPBACK_SAFE(nsamps, in_id, out_id, input, output, prio, prio, benchmark_data); for (size_t i = 0; i < nsamps && (!benchmark_data); i++) { MY_CHECK_CLOSE(input[i].real(), output[i].real(), float(1. / (1 << 16))); MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), float(1. / (1 << 16))); } } MULTI_CONVERTER_TEST_CASE(test_convert_types_fc32_and_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "fc32_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id, conv_prio_type); } // try various lengths to test edge cases id.output_format = "fc32_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_fc32_and_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "fc32_item32_le"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_fc32(nsamps, id, prio, benchmarks); }); id.output_format = "fc32_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_fc32(nsamps, id, prio, benchmarks); }); } MULTI_CONVERTER_TEST_CASE(test_convert_types_fc32_and_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.output_format = "fc32_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id, conv_prio_type); } } BOOST_TEST_DECORATOR(*boost::unit_test::disabled()) MULTI_CONVERTER_TEST_CASE(benchmark_convert_types_fc32_and_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.output_format = "fc32_chdr"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "fc32_item32_be"; benchmark_converter(id, conv_prio_type, [](size_t nsamps, convert::id_type id, uhd::convert::priority_type prio, std::vector* benchmarks) { test_convert_types_fc32(nsamps, id, prio, benchmarks); }); }