// // Copyright 2011-2012 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include <uhd/convert.hpp> #include <stdint.h> #include <boost/test/unit_test.hpp> #include <complex> #include <cstdlib> #include <iostream> #include <vector> using namespace uhd; // typedefs for complex types typedef std::complex<int16_t> sc16_t; typedef std::complex<float> fc32_t; typedef std::complex<double> fc64_t; #define MY_CHECK_CLOSE(a, b, f) \ { \ BOOST_CHECK_MESSAGE(std::abs((a) - (b)) < f, \ "\n\t" << #a << " (" << (a) << ") error " << #b << " (" << (b) << ")"); \ } /*********************************************************************** * Loopback runner: * convert input buffer into intermediate buffer * convert intermediate buffer into output buffer **********************************************************************/ template <typename Range> static void loopback(size_t nsamps, convert::id_type& in_id, convert::id_type& out_id, const Range& input, Range& output, const int prio_in = -1, const int prio_out = -1) { // make this buffer large enough for all test types std::vector<uint64_t> interm(nsamps); std::vector<const void*> input0(1, &input[0]), input1(1, &interm[0]); std::vector<void*> output0(1, &interm[0]), output1(1, &output[0]); // convert to intermediate type convert::converter::sptr c0 = convert::get_converter(in_id, prio_in)(); c0->set_scalar(32767.); c0->conv(input0, output0, nsamps); // convert back to host type convert::converter::sptr c1 = convert::get_converter(out_id, prio_out)(); c1->set_scalar(1 / 32767.); c1->conv(input1, output1, nsamps); } /*********************************************************************** * Test short conversion **********************************************************************/ static void test_convert_types_sc16( size_t nsamps, convert::id_type& id, const int extra_div = 1, int mask = 0xffff) { // fill the input samples std::vector<sc16_t> input(nsamps), output(nsamps); for (sc16_t& in : input) in = sc16_t( short((float((std::rand()) / (double(RAND_MAX) / 2)) - 1) * 32767 / extra_div) & mask, short((float((std::rand()) / (double(RAND_MAX) / 2)) - 1) * 32767 / extra_div) & mask); // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); loopback(nsamps, in_id, out_id, input, output); BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } BOOST_AUTO_TEST_CASE(test_convert_types_be_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_sc16) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id); } } /*********************************************************************** * Test float conversion **********************************************************************/ template <typename data_type> static void test_convert_types_for_floats( size_t nsamps, convert::id_type& id, const double extra_scale = 1.0) { typedef typename data_type::value_type value_type; // fill the input samples std::vector<data_type> input(nsamps), output(nsamps); for (data_type& in : input) in = data_type( ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale), ((std::rand() / (value_type(RAND_MAX) / 2)) - 1) * float(extra_scale)); // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); // make a list of all prio: best/generic combos typedef std::pair<int, int> int_pair_t; const std::vector<int_pair_t> prios{ int_pair_t(0, 0), int_pair_t(-1, 0), int_pair_t(0, -1), int_pair_t(-1, -1)}; // loopback foreach prio combo (generic vs best) for (const auto& prio : prios) { loopback(nsamps, in_id, out_id, input, output, prio.first, prio.second); for (size_t i = 0; i < nsamps; i++) { MY_CHECK_CLOSE(input[i].real(), output[i].real(), value_type(1. / (1 << 14))); MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), value_type(1. / (1 << 14))); } } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc64_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc64_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_chdr_fc64) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.output_format = "sc16_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc64_t>(nsamps, id); } } /*********************************************************************** * Test float to/from sc12 conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_le_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id, 1. / 16); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_sc12_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "sc12_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id, 1. / 16); } } BOOST_AUTO_TEST_CASE(test_convert_types_le_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc12_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, 1, 0xfff0); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_sc16_and_sc12) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "sc12_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, 1, 0xfff0); } } /*********************************************************************** * Test float to/from fc32 conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_le"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32_with_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_item32_be"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_with_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.output_format = "fc32_chdr"; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id); } } /*********************************************************************** * Test float to short conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_fc32_to_sc16) { convert::id_type in_id; in_id.input_format = "fc32"; in_id.num_inputs = 1; in_id.output_format = "sc16_item32_le"; in_id.num_outputs = 1; convert::id_type out_id; out_id.input_format = "sc16_item32_le"; out_id.num_inputs = 1; out_id.output_format = "sc16"; out_id.num_outputs = 1; const size_t nsamps = 13; std::vector<fc32_t> input(nsamps); for (fc32_t& in : input) in = fc32_t( (std::rand() / (RAND_MAX / 2.0)) - 1, (std::rand() / (RAND_MAX / 2.0)) - 1); std::vector<uint32_t> interm(nsamps); std::vector<sc16_t> output(nsamps); std::vector<const void*> input0(1, &input[0]), input1(1, &interm[0]); std::vector<void*> output0(1, &interm[0]), output1(1, &output[0]); // convert float to intermediate convert::converter::sptr c0 = convert::get_converter(in_id)(); c0->set_scalar(32767.); c0->conv(input0, output0, nsamps); // convert intermediate to short convert::converter::sptr c1 = convert::get_converter(out_id)(); c1->set_scalar(1 / 32767.); c1->conv(input1, output1, nsamps); // test that the inputs and outputs match for (size_t i = 0; i < nsamps; i++) { MY_CHECK_CLOSE(input[i].real(), output[i].real() / float(32767), float(0.01)); MY_CHECK_CLOSE(input[i].imag(), output[i].imag() / float(32767), float(0.01)); } } /*********************************************************************** * Test short to float conversion loopback **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_sc16_to_fc32) { convert::id_type in_id; in_id.input_format = "sc16"; in_id.num_inputs = 1; in_id.output_format = "sc16_item32_le"; in_id.num_outputs = 1; convert::id_type out_id; out_id.input_format = "sc16_item32_le"; out_id.num_inputs = 1; out_id.output_format = "fc32"; out_id.num_outputs = 1; const size_t nsamps = 13; std::vector<sc16_t> input(nsamps); for (sc16_t& in : input) in = sc16_t(std::rand() - (RAND_MAX / 2), std::rand() - (RAND_MAX / 2)); std::vector<uint32_t> interm(nsamps); std::vector<fc32_t> output(nsamps); std::vector<const void*> input0(1, &input[0]), input1(1, &interm[0]); std::vector<void*> output0(1, &interm[0]), output1(1, &output[0]); // convert short to intermediate convert::converter::sptr c0 = convert::get_converter(in_id)(); c0->set_scalar(32767.); c0->conv(input0, output0, nsamps); // convert intermediate to float convert::converter::sptr c1 = convert::get_converter(out_id)(); c1->set_scalar(1 / 32767.); c1->conv(input1, output1, nsamps); // test that the inputs and outputs match for (size_t i = 0; i < nsamps; i++) { MY_CHECK_CLOSE(input[i].real() / float(32767), output[i].real(), float(0.01)); MY_CHECK_CLOSE(input[i].imag() / float(32767), output[i].imag(), float(0.01)); } } /*********************************************************************** * Test sc8 conversions **********************************************************************/ BOOST_AUTO_TEST_CASE(test_convert_types_fc64_and_sc8) { convert::id_type id; id.input_format = "fc64"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc64_t>(nsamps, id, 1. / 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc64_t>(nsamps, id, 1. / 256); } } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_and_sc8) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id, 1. / 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_for_floats<fc32_t>(nsamps, id, 1. / 256); } } BOOST_AUTO_TEST_CASE(test_convert_types_sc16_and_sc8) { convert::id_type id; id.input_format = "sc16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "sc8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, 256); } // try various lengths to test edge cases id.output_format = "sc8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_sc16(nsamps, id, 256); } } /*********************************************************************** * Test u8 conversion **********************************************************************/ static void test_convert_types_u8(size_t nsamps, convert::id_type& id) { // fill the input samples std::vector<uint8_t> input(nsamps), output(nsamps); for (uint8_t& in : input) in = uint8_t(std::rand() & 0xFF); // uint32_t d = 48; // for(uint8_t &in: input) in = d++; // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); loopback(nsamps, in_id, out_id, input, output); BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } BOOST_AUTO_TEST_CASE(test_convert_types_u8_and_u8) { convert::id_type id; id.input_format = "u8"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "u8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id); } // try various lengths to test edge cases id.output_format = "u8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_u8_and_u8_chdr) { convert::id_type id; id.input_format = "u8"; id.output_format = "u8_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_u8(nsamps, id); } } /*********************************************************************** * Test s8 conversion **********************************************************************/ static void test_convert_types_s8(size_t nsamps, convert::id_type& id) { // fill the input samples std::vector<int8_t> input(nsamps), output(nsamps); for (int8_t& in : input) in = int8_t(std::rand() & 0xFF); // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); loopback(nsamps, in_id, out_id, input, output); BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } BOOST_AUTO_TEST_CASE(test_convert_types_s8_and_s8) { convert::id_type id; id.input_format = "s8"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "s8_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id); } // try various lengths to test edge cases id.output_format = "s8_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_s8_and_s8_chdr) { convert::id_type id; id.input_format = "s8"; id.output_format = "s8_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s8(nsamps, id); } } /*********************************************************************** * Test s16 conversion **********************************************************************/ static void test_convert_types_s16(size_t nsamps, convert::id_type& id) { // fill the input samples std::vector<int16_t> input(nsamps), output(nsamps); for (int16_t& in : input) in = int16_t(std::rand() & 0xFFFF); // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); loopback(nsamps, in_id, out_id, input, output); BOOST_CHECK_EQUAL_COLLECTIONS( input.begin(), input.end(), output.begin(), output.end()); } BOOST_AUTO_TEST_CASE(test_convert_types_s16_and_s16) { convert::id_type id; id.input_format = "s16"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "s16_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id); } // try various lengths to test edge cases id.output_format = "s16_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_s16_and_s16_chdr) { convert::id_type id; id.input_format = "s16"; id.output_format = "s16_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_s16(nsamps, id); } } /*********************************************************************** * Test fc32 -> fc32 conversion **********************************************************************/ static void test_convert_types_fc32(size_t nsamps, convert::id_type& id) { // fill the input samples std::vector<std::complex<float>> input(nsamps), output(nsamps); for (fc32_t& in : input) in = fc32_t((std::rand() / float(RAND_MAX / 2)) - 1, (std::rand() / float(RAND_MAX / 2)) - 1); // run the loopback and test convert::id_type in_id = id; convert::id_type out_id = id; std::swap(out_id.input_format, out_id.output_format); std::swap(out_id.num_inputs, out_id.num_outputs); loopback(nsamps, in_id, out_id, input, output); for (size_t i = 0; i < nsamps; i++) { MY_CHECK_CLOSE(input[i].real(), output[i].real(), float(1. / (1 << 16))); MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), float(1. / (1 << 16))); } } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_and_fc32) { convert::id_type id; id.input_format = "fc32"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases id.output_format = "fc32_item32_le"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id); } // try various lengths to test edge cases id.output_format = "fc32_item32_be"; for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id); } } BOOST_AUTO_TEST_CASE(test_convert_types_fc32_and_fc32_chdr) { convert::id_type id; id.input_format = "fc32"; id.output_format = "fc32_chdr"; id.num_inputs = 1; id.num_outputs = 1; // try various lengths to test edge cases for (size_t nsamps = 1; nsamps < 16; nsamps++) { test_convert_types_fc32(nsamps, id); } }