//
// Copyright 2011-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
//typedefs for complex types
typedef std::complex sc16_t;
typedef std::complex fc32_t;
typedef std::complex fc64_t;
#define MY_CHECK_CLOSE(a, b, f) if ((std::abs(a) > (f))) \
BOOST_CHECK_CLOSE_FRACTION(a, b, f)
/***********************************************************************
* Loopback runner:
* convert input buffer into intermediate buffer
* convert intermediate buffer into output buffer
**********************************************************************/
template static void loopback(
size_t nsamps,
convert::id_type &in_id,
convert::id_type &out_id,
const Range &input,
Range &output
){
//item32 is largest device type
std::vector interm(nsamps);
std::vector input0(1, &input[0]), input1(1, &interm[0]);
std::vector output0(1, &interm[0]), output1(1, &output[0]);
//convert to intermediate type
convert::converter::sptr c0 = convert::get_converter(in_id)();
c0->set_scalar(32767.);
c0->conv(input0, output0, nsamps);
//convert back to host type
convert::converter::sptr c1 = convert::get_converter(out_id)();
c1->set_scalar(1/32767.);
c1->conv(input1, output1, nsamps);
}
/***********************************************************************
* Test short conversion
**********************************************************************/
static void test_convert_types_sc16(
size_t nsamps, convert::id_type &id
){
//fill the input samples
std::vector input(nsamps), output(nsamps);
BOOST_FOREACH(sc16_t &in, input) in = sc16_t(
std::rand()-(RAND_MAX/2),
std::rand()-(RAND_MAX/2)
);
//run the loopback and test
convert::id_type in_id = id;
convert::id_type out_id = id;
std::swap(out_id.input_format, out_id.output_format);
std::swap(out_id.num_inputs, out_id.num_outputs);
loopback(nsamps, in_id, out_id, input, output);
BOOST_CHECK_EQUAL_COLLECTIONS(input.begin(), input.end(), output.begin(), output.end());
}
BOOST_AUTO_TEST_CASE(test_convert_types_be_sc16){
convert::id_type id;
id.input_format = "sc16";
id.num_inputs = 1;
id.output_format = "sc16_item32_be";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_sc16(nsamps, id);
}
}
BOOST_AUTO_TEST_CASE(test_convert_types_le_sc16){
convert::id_type id;
id.input_format = "sc16";
id.num_inputs = 1;
id.output_format = "sc16_item32_le";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_sc16(nsamps, id);
}
}
/***********************************************************************
* Test float conversion
**********************************************************************/
template
static void test_convert_types_for_floats(
size_t nsamps, convert::id_type &id
){
typedef typename data_type::value_type value_type;
//fill the input samples
std::vector input(nsamps), output(nsamps);
BOOST_FOREACH(data_type &in, input) in = data_type(
(std::rand()/value_type(RAND_MAX/2)) - 1,
(std::rand()/value_type(RAND_MAX/2)) - 1
);
//run the loopback and test
convert::id_type in_id = id;
convert::id_type out_id = id;
std::swap(out_id.input_format, out_id.output_format);
std::swap(out_id.num_inputs, out_id.num_outputs);
loopback(nsamps, in_id, out_id, input, output);
for (size_t i = 0; i < nsamps; i++){
MY_CHECK_CLOSE(input[i].real(), output[i].real(), value_type(0.01));
MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), value_type(0.01));
}
}
BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32){
convert::id_type id;
id.input_format = "fc32";
id.num_inputs = 1;
id.output_format = "sc16_item32_be";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_for_floats(nsamps, id);
}
}
BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32){
convert::id_type id;
id.input_format = "fc32";
id.num_inputs = 1;
id.output_format = "sc16_item32_le";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_for_floats(nsamps, id);
}
}
BOOST_AUTO_TEST_CASE(test_convert_types_be_fc64){
convert::id_type id;
id.input_format = "fc64";
id.num_inputs = 1;
id.output_format = "sc16_item32_be";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_for_floats(nsamps, id);
}
}
BOOST_AUTO_TEST_CASE(test_convert_types_le_fc64){
convert::id_type id;
id.input_format = "fc64";
id.num_inputs = 1;
id.output_format = "sc16_item32_le";
id.num_outputs = 1;
//try various lengths to test edge cases
for (size_t nsamps = 1; nsamps < 16; nsamps++){
test_convert_types_for_floats(nsamps, id);
}
}
/***********************************************************************
* Test float to short conversion loopback
**********************************************************************/
BOOST_AUTO_TEST_CASE(test_convert_types_fc32_to_sc16){
convert::id_type in_id;
in_id.input_format = "fc32";
in_id.num_inputs = 1;
in_id.output_format = "sc16_item32_le";
in_id.num_outputs = 1;
convert::id_type out_id;
out_id.input_format = "sc16_item32_le";
out_id.num_inputs = 1;
out_id.output_format = "sc16";
out_id.num_outputs = 1;
const size_t nsamps = 13;
std::vector input(nsamps);
BOOST_FOREACH(fc32_t &in, input) in = fc32_t(
(std::rand()/float(RAND_MAX/2)) - 1,
(std::rand()/float(RAND_MAX/2)) - 1
);
std::vector interm(nsamps);
std::vector output(nsamps);
std::vector input0(1, &input[0]), input1(1, &interm[0]);
std::vector output0(1, &interm[0]), output1(1, &output[0]);
//convert float to intermediate
convert::converter::sptr c0 = convert::get_converter(in_id)();
c0->set_scalar(32767.);
c0->conv(input0, output0, nsamps);
//convert intermediate to short
convert::converter::sptr c1 = convert::get_converter(out_id)();
c1->set_scalar(1/32767.);
c1->conv(input1, output1, nsamps);
//test that the inputs and outputs match
for (size_t i = 0; i < nsamps; i++){
MY_CHECK_CLOSE(input[i].real(), output[i].real()/float(32767), float(0.01));
MY_CHECK_CLOSE(input[i].imag(), output[i].imag()/float(32767), float(0.01));
}
}
/***********************************************************************
* Test short to float conversion loopback
**********************************************************************/
BOOST_AUTO_TEST_CASE(test_convert_types_sc16_to_fc32){
convert::id_type in_id;
in_id.input_format = "sc16";
in_id.num_inputs = 1;
in_id.output_format = "sc16_item32_le";
in_id.num_outputs = 1;
convert::id_type out_id;
out_id.input_format = "sc16_item32_le";
out_id.num_inputs = 1;
out_id.output_format = "fc32";
out_id.num_outputs = 1;
const size_t nsamps = 13;
std::vector input(nsamps);
BOOST_FOREACH(sc16_t &in, input) in = sc16_t(
std::rand()-(RAND_MAX/2),
std::rand()-(RAND_MAX/2)
);
std::vector interm(nsamps);
std::vector output(nsamps);
std::vector input0(1, &input[0]), input1(1, &interm[0]);
std::vector output0(1, &interm[0]), output1(1, &output[0]);
//convert short to intermediate
convert::converter::sptr c0 = convert::get_converter(in_id)();
c0->set_scalar(32767.);
c0->conv(input0, output0, nsamps);
//convert intermediate to float
convert::converter::sptr c1 = convert::get_converter(out_id)();
c1->set_scalar(1/32767.);
c1->conv(input1, output1, nsamps);
//test that the inputs and outputs match
for (size_t i = 0; i < nsamps; i++){
MY_CHECK_CLOSE(input[i].real()/float(32767), output[i].real(), float(0.01));
MY_CHECK_CLOSE(input[i].imag()/float(32767), output[i].imag(), float(0.01));
}
}