// // Copyright 2010-2011,2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include using namespace uhd; static bool compare_by_step_size( const size_t &rhs, const size_t &lhs, std::vector &fcns ){ return fcns.at(rhs).get_range().step() > fcns.at(lhs).get_range().step(); } /*! * Get a multiple of step with the following relation: * result = step*floor(num/step) * * Due to small doubleing-point inaccuracies: * num = n*step + e, where e is a small inaccuracy. * When e is negative, floor would yield (n-1)*step, * despite that n*step is really the desired result. * This function is designed to mitigate that issue. * * \param num the number to approximate * \param step the step size to round with * \param e the small inaccuracy to account for * \return a multiple of step approximating num */ template static T floor_step(T num, T step, T e = T(0.001)){ if (num < T(0)) { return step*int(num/step - e); } else { return step*int(num/step + e); } } gain_group::~gain_group(void){ /* NOP */ } /*********************************************************************** * gain group implementation **********************************************************************/ class gain_group_impl : public gain_group{ public: gain_group_impl(void){ /*NOP*/ } gain_range_t get_range(const std::string &name){ if (not name.empty()) return _name_to_fcns.get(name).get_range(); double overall_min = 0, overall_max = 0, overall_step = 0; for(const gain_fcns_t &fcns: get_all_fcns()){ const gain_range_t range = fcns.get_range(); overall_min += range.start(); overall_max += range.stop(); //the overall step is the min (zero is invalid, first run) if (overall_step == 0) overall_step = range.step(); overall_step = std::min(overall_step, range.step()); } return gain_range_t(overall_min, overall_max, overall_step); } double get_value(const std::string &name){ if (not name.empty()) return _name_to_fcns.get(name).get_value(); double overall_gain = 0; for(const gain_fcns_t &fcns: get_all_fcns()){ overall_gain += fcns.get_value(); } return overall_gain; } void set_value(double gain, const std::string &name){ if (not name.empty()) return _name_to_fcns.get(name).set_value(gain); std::vector all_fcns = get_all_fcns(); if (all_fcns.size() == 0) return; //nothing to set! //get the max step size among the gains double max_step = 0; for(const gain_fcns_t &fcns: all_fcns){ max_step = std::max(max_step, fcns.get_range().step()); } //create gain bucket to distribute power std::vector gain_bucket; //distribute power according to priority (round to max step) double gain_left_to_distribute = gain; for(const gain_fcns_t &fcns: all_fcns){ const gain_range_t range = fcns.get_range(); gain_bucket.push_back(floor_step(uhd::clip( gain_left_to_distribute, range.start(), range.stop() ), max_step)); gain_left_to_distribute -= gain_bucket.back(); } //get a list of indexes sorted by step size large to small std::vector indexes_step_size_dec; for (size_t i = 0; i < all_fcns.size(); i++){ indexes_step_size_dec.push_back(i); } std::sort( indexes_step_size_dec.begin(), indexes_step_size_dec.end(), boost::bind(&compare_by_step_size, _1, _2, all_fcns) ); UHD_ASSERT_THROW( all_fcns.at(indexes_step_size_dec.front()).get_range().step() >= all_fcns.at(indexes_step_size_dec.back()).get_range().step() ); //distribute the remainder (less than max step) //fill in the largest step sizes first that are less than the remainder for(size_t i: indexes_step_size_dec){ const gain_range_t range = all_fcns.at(i).get_range(); double additional_gain = floor_step(uhd::clip( gain_bucket.at(i) + gain_left_to_distribute, range.start(), range.stop() ), range.step()) - gain_bucket.at(i); gain_bucket.at(i) += additional_gain; gain_left_to_distribute -= additional_gain; } UHD_LOGGER_DEBUG("UHD") << "gain_left_to_distribute " << gain_left_to_distribute ; //now write the bucket out to the individual gain values for (size_t i = 0; i < gain_bucket.size(); i++){ UHD_LOGGER_DEBUG("UHD") << i << ": " << gain_bucket.at(i) ; all_fcns.at(i).set_value(gain_bucket.at(i)); } } const std::vector get_names(void){ return _name_to_fcns.keys(); } void register_fcns( const std::string &name, const gain_fcns_t &gain_fcns, size_t priority ){ if (name.empty() or _name_to_fcns.has_key(name)){ //ensure the name name is unique and non-empty return register_fcns(name + "_", gain_fcns, priority); } _registry[priority].push_back(gain_fcns); _name_to_fcns[name] = gain_fcns; } private: //! get the gain function sets in order (highest priority first) std::vector get_all_fcns(void){ std::vector all_fcns; for(size_t key: uhd::sorted(_registry.keys())){ const std::vector &fcns = _registry[key]; all_fcns.insert(all_fcns.begin(), fcns.begin(), fcns.end()); } return all_fcns; } uhd::dict > _registry; uhd::dict _name_to_fcns; }; /*********************************************************************** * gain group factory function **********************************************************************/ gain_group::sptr gain_group::make(void){ return sptr(new gain_group_impl()); }