// // Copyright 2010-2011,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include <uhd/exception.hpp> #include <uhd/types/dict.hpp> #include <uhd/utils/algorithm.hpp> #include <uhd/utils/gain_group.hpp> #include <uhd/utils/log.hpp> #include <algorithm> #include <functional> #include <vector> using namespace uhd; static bool compare_by_step_size( const size_t& rhs, const size_t& lhs, std::vector<gain_fcns_t>& fcns) { return fcns.at(rhs).get_range().step() > fcns.at(lhs).get_range().step(); } /*! * Get a multiple of step with the following relation: * result = step*floor(num/step) * * Due to small doubleing-point inaccuracies: * num = n*step + e, where e is a small inaccuracy. * When e is negative, floor would yield (n-1)*step, * despite that n*step is really the desired result. * This function is designed to mitigate that issue. * * \param num the number to approximate * \param step the step size to round with * \param e the small inaccuracy to account for * \return a multiple of step approximating num */ template <typename T> static T floor_step(T num, T step, T e = T(0.001)) { if (num < T(0)) { return step * int(num / step - e); } else { return step * int(num / step + e); } } gain_group::~gain_group(void) { /* NOP */ } /*********************************************************************** * gain group implementation **********************************************************************/ class gain_group_impl : public gain_group { public: gain_group_impl(void) { /*NOP*/ } gain_range_t get_range(const std::string& name) { if (not name.empty()) return _name_to_fcns.get(name).get_range(); double overall_min = 0, overall_max = 0, overall_step = 0; for (const gain_fcns_t& fcns : get_all_fcns()) { const gain_range_t range = fcns.get_range(); overall_min += range.start(); overall_max += range.stop(); // the overall step is the min (zero is invalid, first run) if (overall_step == 0) { overall_step = range.step(); } else if (range.step()) { overall_step = std::min(overall_step, range.step()); } } return gain_range_t(overall_min, overall_max, overall_step); } double get_value(const std::string& name) { if (not name.empty()) return _name_to_fcns.get(name).get_value(); double overall_gain = 0; for (const gain_fcns_t& fcns : get_all_fcns()) { overall_gain += fcns.get_value(); } return overall_gain; } void set_value(double gain, const std::string& name) { if (not name.empty()) return _name_to_fcns.get(name).set_value(gain); std::vector<gain_fcns_t> all_fcns = get_all_fcns(); if (all_fcns.size() == 0) return; // nothing to set! // get the max step size among the gains double max_step = 0; for (const gain_fcns_t& fcns : all_fcns) { max_step = std::max(max_step, fcns.get_range().step()); } // create gain bucket to distribute power std::vector<double> gain_bucket; // distribute power according to priority (round to max step) double gain_left_to_distribute = gain; for (const gain_fcns_t& fcns : all_fcns) { const gain_range_t range = fcns.get_range(); gain_bucket.push_back(floor_step( uhd::clip(gain_left_to_distribute, range.start(), range.stop()), max_step)); gain_left_to_distribute -= gain_bucket.back(); } // get a list of indexes sorted by step size large to small std::vector<size_t> indexes_step_size_dec; for (size_t i = 0; i < all_fcns.size(); i++) { indexes_step_size_dec.push_back(i); } std::sort(indexes_step_size_dec.begin(), indexes_step_size_dec.end(), std::bind(&compare_by_step_size, std::placeholders::_1, std::placeholders::_2, all_fcns)); UHD_ASSERT_THROW(all_fcns.at(indexes_step_size_dec.front()).get_range().step() >= all_fcns.at(indexes_step_size_dec.back()).get_range().step()); // distribute the remainder (less than max step) // fill in the largest step sizes first that are less than the remainder for (size_t i : indexes_step_size_dec) { const gain_range_t range = all_fcns.at(i).get_range(); double additional_gain = floor_step(uhd::clip(gain_bucket.at(i) + gain_left_to_distribute, range.start(), range.stop()), range.step()) - gain_bucket.at(i); gain_bucket.at(i) += additional_gain; gain_left_to_distribute -= additional_gain; } // now write the bucket out to the individual gain values for (size_t i = 0; i < gain_bucket.size(); i++) { all_fcns.at(i).set_value(gain_bucket.at(i)); } } const std::vector<std::string> get_names(void) { return _name_to_fcns.keys(); } void register_fcns( const std::string& name, const gain_fcns_t& gain_fcns, size_t priority) { if (name.empty() or _name_to_fcns.has_key(name)) { // ensure the name name is unique and non-empty return register_fcns(name + "_", gain_fcns, priority); } _registry[priority].push_back(gain_fcns); _name_to_fcns[name] = gain_fcns; } private: //! get the gain function sets in order (highest priority first) std::vector<gain_fcns_t> get_all_fcns(void) { std::vector<gain_fcns_t> all_fcns; for (size_t key : uhd::sorted(_registry.keys())) { const std::vector<gain_fcns_t>& fcns = _registry[key]; all_fcns.insert(all_fcns.begin(), fcns.begin(), fcns.end()); } return all_fcns; } uhd::dict<size_t, std::vector<gain_fcns_t>> _registry; uhd::dict<std::string, gain_fcns_t> _name_to_fcns; }; /*********************************************************************** * gain group factory function **********************************************************************/ gain_group::sptr gain_group::make(void) { return sptr(new gain_group_impl()); } gain_group::sptr gain_group::make_zero() { gain_fcns_t gain_fcns; gain_fcns.get_range = []() { return meta_range_t(0.0, 0.0); }; gain_fcns.get_value = []() { return 0.0; }; gain_fcns.set_value = [](const double) {}; auto gg = make(); gg->register_fcns("null", gain_fcns); return gg; }