//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "usrp2_impl.hpp"
#include "fw_common.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include //used for htonl and ntohl
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
namespace asio = boost::asio;
/***********************************************************************
* MTU Discovery
**********************************************************************/
struct mtu_result_t{
size_t recv_mtu, send_mtu;
};
static mtu_result_t determine_mtu(const std::string &addr, const mtu_result_t &user_mtu){
udp_simple::sptr udp_sock = udp_simple::make_connected(
addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)
);
//The FPGA offers 4K buffers, and the user may manually request this.
//However, multiple simultaneous receives (2DSP slave + 2DSP master),
//require that buffering to be used internally, and this is a safe setting.
std::vector buffer(std::max(user_mtu.recv_mtu, user_mtu.send_mtu));
usrp2_ctrl_data_t *ctrl_data = reinterpret_cast(&buffer.front());
static const double echo_timeout = 0.020; //20 ms
//test holler - check if its supported in this fw version
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (ntohl(ctrl_data->id) != USRP2_CTRL_ID_HOLLER_BACK_DUDE)
throw uhd::not_implemented_error("holler protocol not implemented");
size_t min_recv_mtu = sizeof(usrp2_ctrl_data_t), max_recv_mtu = user_mtu.recv_mtu;
size_t min_send_mtu = sizeof(usrp2_ctrl_data_t), max_send_mtu = user_mtu.send_mtu;
while (min_recv_mtu < max_recv_mtu){
size_t test_mtu = (max_recv_mtu/2 + min_recv_mtu/2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(test_mtu);
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= test_mtu) min_recv_mtu = test_mtu;
else max_recv_mtu = test_mtu - 4;
}
while (min_send_mtu < max_send_mtu){
size_t test_mtu = (max_send_mtu/2 + min_send_mtu/2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, test_mtu));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= sizeof(usrp2_ctrl_data_t)) len = ntohl(ctrl_data->data.echo_args.len);
if (len >= test_mtu) min_send_mtu = test_mtu;
else max_send_mtu = test_mtu - 4;
}
mtu_result_t mtu;
mtu.recv_mtu = min_recv_mtu;
mtu.send_mtu = min_send_mtu;
return mtu;
}
/***********************************************************************
* Helpers
**********************************************************************/
static void init_xport(zero_copy_if::sptr xport){
//Send a small data packet so the usrp2 knows the udp source port.
//This setup must happen before further initialization occurs
//or the async update packets will cause ICMP destination unreachable.
static const boost::uint32_t data[2] = {
uhd::htonx(boost::uint32_t(0 /* don't care seq num */)),
uhd::htonx(boost::uint32_t(USRP2_INVALID_VRT_HEADER))
};
transport::managed_send_buffer::sptr send_buff = xport->get_send_buff();
std::memcpy(send_buff->cast(), &data, sizeof(data));
send_buff->commit(sizeof(data));
}
/***********************************************************************
* Structors
**********************************************************************/
usrp2_impl::usrp2_impl(const device_addr_t &_device_addr){
UHD_MSG(status) << "Opening a USRP2/N-Series device..." << std::endl;
device_addr_t device_addr = _device_addr;
//setup the dsp transport hints (default to a large recv buff)
if (not device_addr.has_key("recv_buff_size")){
#if defined(UHD_PLATFORM_MACOS) || defined(UHD_PLATFORM_BSD)
//limit buffer resize on macos or it will error
device_addr["recv_buff_size"] = "1e6";
#elif defined(UHD_PLATFORM_LINUX) || defined(UHD_PLATFORM_WIN32)
//set to half-a-second of buffering at max rate
device_addr["recv_buff_size"] = "50e6";
#endif
}
device_addrs_t device_args = separate_device_addr(device_addr);
//extract the user's requested MTU size or default
mtu_result_t user_mtu;
user_mtu.recv_mtu = size_t(device_addr.cast("recv_frame_size", udp_simple::mtu));
user_mtu.send_mtu = size_t(device_addr.cast("send_frame_size", udp_simple::mtu));
try{
//calculate the minimum send and recv mtu of all devices
mtu_result_t mtu = determine_mtu(device_args[0]["addr"], user_mtu);
for (size_t i = 1; i < device_args.size(); i++){
mtu_result_t mtu_i = determine_mtu(device_args[i]["addr"], user_mtu);
mtu.recv_mtu = std::min(mtu.recv_mtu, mtu_i.recv_mtu);
mtu.send_mtu = std::min(mtu.send_mtu, mtu_i.send_mtu);
}
device_addr["recv_frame_size"] = boost::lexical_cast(mtu.recv_mtu);
device_addr["send_frame_size"] = boost::lexical_cast(mtu.send_mtu);
UHD_MSG(status) << boost::format("Current recv frame size: %d bytes") % mtu.recv_mtu << std::endl;
UHD_MSG(status) << boost::format("Current send frame size: %d bytes") % mtu.send_mtu << std::endl;
}
catch(const uhd::not_implemented_error &){
//just ignore this error, makes older fw work...
}
device_args = separate_device_addr(device_addr); //update args for new frame sizes
////////////////////////////////////////////////////////////////////
// create controller objects and initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_mboard_stuff.resize(device_args.size());
for (size_t mb = 0; mb < _mboard_stuff.size(); mb++){
const std::string addr = device_args[mb]["addr"];
property_tree::path_type mb_path = str(boost::format("/mboards/%u") % mb);
////////////////////////////////////////////////////////////////
// construct transports for dsp and async errors
////////////////////////////////////////////////////////////////
UHD_LOG << "Making transport for DSP0..." << std::endl;
_mboard_stuff[mb].dsp_xports.push_back(udp_zero_copy::make(
addr, BOOST_STRINGIZE(USRP2_UDP_DSP0_PORT), device_args[mb]
));
init_xport(_mboard_stuff[mb].dsp_xports.back());
UHD_LOG << "Making transport for DSP1..." << std::endl;
_mboard_stuff[mb].dsp_xports.push_back(udp_zero_copy::make(
addr, BOOST_STRINGIZE(USRP2_UDP_DSP1_PORT), device_args[mb]
));
init_xport(_mboard_stuff[mb].dsp_xports.back());
UHD_LOG << "Making transport for ERR0..." << std::endl;
_mboard_stuff[mb].err_xports.push_back(udp_zero_copy::make(
addr, BOOST_STRINGIZE(USRP2_UDP_ERR0_PORT), device_addr_t()
));
init_xport(_mboard_stuff[mb].err_xports.back());
////////////////////////////////////////////////////////////////
// create the iface that controls i2c, spi, uart, and wb
////////////////////////////////////////////////////////////////
_mboard_stuff[mb].iface = usrp2_iface::make(udp_simple::make_connected(
addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)
));
_tree->create(mb_path / "name", property(_mboard_stuff[mb].iface->get_cname()));
////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////
property mb_eeprom_prop;
mb_eeprom_prop.set(_mboard_stuff[mb].iface->mb_eeprom);
mb_eeprom_prop.subscribe(boost::bind(&usrp2_impl::set_mb_eeprom, this, mb, _1));
_tree->create(mb_path / "eeprom", mb_eeprom_prop);
////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////
_mboard_stuff[mb].clock = usrp2_clock_ctrl::make(_mboard_stuff[mb].iface);
const double tick_rate = _mboard_stuff[mb].clock->get_master_clock_rate();
property tick_rate_prop(tick_rate);
_tree->create(mb_path / "tick_rate", tick_rate_prop);
////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////
property_tree::path_type rx_codec_path = mb_path / "rx_codecs/A";
property_tree::path_type tx_codec_path = mb_path / "tx_codecs/A";
_mboard_stuff[mb].codec = usrp2_codec_ctrl::make(_mboard_stuff[mb].iface);
switch(_mboard_stuff[mb].iface->get_rev()){
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:{
_tree->create(rx_codec_path / "name", property("ads62p44"));
_tree->create(rx_codec_path / "gains/digital/range", property(meta_range_t(0, 6.0, 0.5)));
property dig_gain_prop, fine_gain_prop;
dig_gain_prop.subscribe(boost::bind(&usrp2_codec_ctrl::set_rx_digital_gain, _mboard_stuff[mb].codec, _1));
_tree->create(rx_codec_path / "gains/digital/value", dig_gain_prop);
_tree->create(rx_codec_path / "gains/fine/range", property(meta_range_t(0, 0.5, 0.05)));
fine_gain_prop.subscribe(boost::bind(&usrp2_codec_ctrl::set_rx_digital_fine_gain, _mboard_stuff[mb].codec, _1));
_tree->create(rx_codec_path / "gains/fine/value", fine_gain_prop);
}break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
_tree->create(rx_codec_path / "name", property("ltc2284"));
break;
case usrp2_iface::USRP_NXXX:
_tree->create(rx_codec_path / "name", property("??????"));
break;
}
_tree->create(tx_codec_path / "name", property("ad9777"));
////////////////////////////////////////////////////////////////
// create gpsdo control objects
////////////////////////////////////////////////////////////////
if (_mboard_stuff[mb].iface->mb_eeprom["gpsdo"] == "internal"){
_mboard_stuff[mb].gps = gps_ctrl::make(
_mboard_stuff[mb].iface->get_gps_write_fn(),
_mboard_stuff[mb].iface->get_gps_read_fn()
);
BOOST_FOREACH(const std::string &name, _mboard_stuff[mb].gps->get_sensors()){
property sensor_prop;
sensor_prop.publish(boost::bind(&gps_ctrl::get_sensor, _mboard_stuff[mb].gps, name));
_tree->create(mb_path / "sensors" / name, sensor_prop);
}
}
////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////
property mimo_lock_sensor_prop;
mimo_lock_sensor_prop.publish(boost::bind(&usrp2_impl::get_mimo_locked, this, mb));
_tree->create(mb_path / "sensors/mimo_locked", mimo_lock_sensor_prop);
property ref_lock_sensor_prop;
ref_lock_sensor_prop.publish(boost::bind(&usrp2_impl::get_ref_locked, this, mb));
_tree->create(mb_path / "sensors/ref_locked", ref_lock_sensor_prop);
//TODO //initialize VITA time to GPS time
//TODO clock source, time source
////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////
_mboard_stuff[mb].rx_fe = rx_frontend_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_RX_FRONT)
);
_mboard_stuff[mb].tx_fe = tx_frontend_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_TX_FRONT)
);
//TODO lots of properties to expose here for frontends
////////////////////////////////////////////////////////////////
// create dsp control objects
////////////////////////////////////////////////////////////////
_mboard_stuff[mb].rx_dsps.push_back(rx_dsp_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_RX_DSP0), U2_REG_SR_ADDR(SR_RX_CTRL0), 3
));
_mboard_stuff[mb].rx_dsps.push_back(rx_dsp_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_RX_DSP1), U2_REG_SR_ADDR(SR_RX_CTRL1), 4
));
for (size_t dspno = 0; dspno < _mboard_stuff[mb].rx_dsps.size(); dspno++){
_mboard_stuff[mb].rx_dsps[dspno]->set_tick_rate(tick_rate); //does not change on usrp2
property_tree::path_type rx_dsp_path = mb_path / str(boost::format("rx_dsps/%u") % dspno);
property host_rate_prop, freq_prop;
host_rate_prop.subscribe_master(boost::bind(&rx_dsp_core_200::set_host_rate, _mboard_stuff[mb].rx_dsps[dspno], _1));
_tree->create(rx_dsp_path / "rate/value", host_rate_prop);
freq_prop.subscribe_master(boost::bind(&rx_dsp_core_200::set_freq, _mboard_stuff[mb].rx_dsps[dspno], _1));
_tree->create(rx_dsp_path / "freq/value", freq_prop);
//TODO set nsamps per packet
}
_mboard_stuff[mb].tx_dsp = tx_dsp_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_TX_DSP), U2_REG_SR_ADDR(SR_TX_CTRL), 2
);
_mboard_stuff[mb].tx_dsp->set_tick_rate(tick_rate); //does not change on usrp2
property tx_dsp_host_rate_prop, tx_dsp_freq_prop;
tx_dsp_host_rate_prop.subscribe_master(boost::bind(&tx_dsp_core_200::set_host_rate, _mboard_stuff[mb].tx_dsp, _1));
_tree->create(mb_path / "tx_dsps/0/rate/value", tx_dsp_host_rate_prop);
tx_dsp_freq_prop.subscribe_master(boost::bind(&tx_dsp_core_200::set_freq, _mboard_stuff[mb].tx_dsp, _1));
_tree->create(mb_path / "tx_dsps/0/freq/value", tx_dsp_freq_prop);
//TODO combine w/ codec shift
//setup dsp flow control
const double ups_per_sec = device_args[mb].cast("ups_per_sec", 20);
const size_t send_frame_size = _mboard_stuff[mb].dsp_xports.front()->get_send_frame_size();
const double ups_per_fifo = device_args[mb].cast("ups_per_fifo", 8.0);
_mboard_stuff[mb].tx_dsp->set_updates(
(ups_per_sec > 0.0)? size_t(tick_rate/ups_per_sec) : 0,
(ups_per_fifo > 0.0)? size_t(USRP2_SRAM_BYTES/ups_per_fifo/send_frame_size) : 0
);
////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////
time64_core_200::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_secs_imm = U2_REG_TIME64_SECS_RB_IMM;
time64_rb_bases.rb_ticks_imm = U2_REG_TIME64_TICKS_RB_IMM;
time64_rb_bases.rb_secs_pps = U2_REG_TIME64_SECS_RB_PPS;
time64_rb_bases.rb_ticks_pps = U2_REG_TIME64_TICKS_RB_PPS;
_mboard_stuff[mb].time64 = time64_core_200::make(
_mboard_stuff[mb].iface, U2_REG_SR_ADDR(SR_TIME64), time64_rb_bases, mimo_clock_sync_delay_cycles
);
_mboard_stuff[mb].time64->set_tick_rate(tick_rate); //does not change on usrp2
property time_now_prop, time_pps_prop;
time_now_prop.publish(boost::bind(&time64_core_200::get_time_now, _mboard_stuff[mb].time64));
time_now_prop.subscribe(boost::bind(&time64_core_200::set_time_now, _mboard_stuff[mb].time64, _1));
_tree->create(mb_path / "time/now", time_now_prop);
time_pps_prop.publish(boost::bind(&time64_core_200::get_time_last_pps, _mboard_stuff[mb].time64));
time_pps_prop.subscribe(boost::bind(&time64_core_200::set_time_next_pps, _mboard_stuff[mb].time64, _1));
_tree->create(mb_path / "time/pps", time_pps_prop);
////////////////////////////////////////////////////////////////
// create dboard control objects
////////////////////////////////////////////////////////////////
//read the dboard eeprom to extract the dboard ids
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom;
rx_db_eeprom.load(*_mboard_stuff[mb].iface, USRP2_I2C_ADDR_RX_DB);
tx_db_eeprom.load(*_mboard_stuff[mb].iface, USRP2_I2C_ADDR_TX_DB);
gdb_eeprom.load(*_mboard_stuff[mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
//create the properties and register subscribers
property rx_db_eeprom_prop(rx_db_eeprom), tx_db_eeprom_prop(tx_db_eeprom), gdb_eeprom_prop(gdb_eeprom);
rx_db_eeprom_prop.subscribe(boost::bind(&usrp2_impl::set_db_eeprom, this, mb, "rx", _1));
_tree->create(mb_path / "dboards/A/rx_eeprom", rx_db_eeprom_prop);
tx_db_eeprom_prop.subscribe(boost::bind(&usrp2_impl::set_db_eeprom, this, mb, "tx", _1));
_tree->create(mb_path / "dboards/A/tx_eeprom", tx_db_eeprom_prop);
gdb_eeprom_prop.subscribe(boost::bind(&usrp2_impl::set_db_eeprom, this, mb, "gdb", _1));
_tree->create(mb_path / "dboards/A/gdb_eeprom", gdb_eeprom_prop);
//create a new dboard interface and manager
_mboard_stuff[mb].dboard_iface = make_usrp2_dboard_iface(_mboard_stuff[mb].iface, _mboard_stuff[mb].clock);
_tree->create(mb_path / "dboards/A/iface", property(_mboard_stuff[mb].dboard_iface));
_mboard_stuff[mb].dboard_manager = dboard_manager::make(
rx_db_eeprom.id,
((gdb_eeprom.id == dboard_id_t::none())? tx_db_eeprom : gdb_eeprom).id,
_mboard_stuff[mb].dboard_iface
);
BOOST_FOREACH(const std::string &name, _mboard_stuff[mb].dboard_manager->get_rx_subdev_names()){
dboard_manager::populate_prop_tree_from_subdev(
_tree, mb_path / "dboards/A/rx_frontends" / name,
_mboard_stuff[mb].dboard_manager->get_rx_subdev(name)
);
}
BOOST_FOREACH(const std::string &name, _mboard_stuff[mb].dboard_manager->get_tx_subdev_names()){
dboard_manager::populate_prop_tree_from_subdev(
_tree, mb_path / "dboards/A/tx_frontends" / name,
_mboard_stuff[mb].dboard_manager->get_tx_subdev(name)
);
}
}
}
usrp2_impl::~usrp2_impl(void){UHD_SAFE_CALL(
for (size_t mb = 0; mb < _mboard_stuff.size(); mb++){
_mboard_stuff[mb].tx_dsp->set_updates(0, 0);
}
)}
void usrp2_impl::set_mb_eeprom(const size_t which_mb, const uhd::usrp::mboard_eeprom_t &mb_eeprom){
mb_eeprom.commit(*(_mboard_stuff[which_mb].iface), mboard_eeprom_t::MAP_N100);
}
void usrp2_impl::set_db_eeprom(const size_t which_mb, const std::string &type, const uhd::usrp::dboard_eeprom_t &db_eeprom){
if (type == "rx") db_eeprom.store(*_mboard_stuff[which_mb].iface, USRP2_I2C_ADDR_RX_DB);
if (type == "tx") db_eeprom.store(*_mboard_stuff[which_mb].iface, USRP2_I2C_ADDR_TX_DB);
if (type == "gdb") db_eeprom.store(*_mboard_stuff[which_mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
}
sensor_value_t usrp2_impl::get_mimo_locked(const size_t which_mb){
const bool lock = (_mboard_stuff[which_mb].iface->peek32(U2_REG_IRQ_RB) & (1<<10)) != 0;
return sensor_value_t("MIMO", lock, "locked", "unlocked");
}
sensor_value_t usrp2_impl::get_ref_locked(const size_t which_mb){
const bool lock = (_mboard_stuff[which_mb].iface->peek32(U2_REG_IRQ_RB) & (1<<11)) != 0;
return sensor_value_t("Ref", lock, "locked", "unlocked");
}