// // Copyright 2021 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include "x400_gpio_control.hpp" using namespace uhd::rfnoc::x400; namespace { namespace gpio_regmap { // Relative to the channel's ATR base constexpr uint32_t ATR_IDLE_OFFSET = 0x0; constexpr uint32_t ATR_RX_OFFSET = 0x4; constexpr uint32_t ATR_TX_OFFSET = 0x8; constexpr uint32_t ATR_XX_OFFSET = 0xC; constexpr uint32_t ATR_STRIDE = 0x10; // Relative to the radio control base constexpr uint32_t CLASSIC_MODE_OFFSET = 0x44; constexpr uint32_t DDR_OFFSET = 0x48; constexpr uint32_t DISABLED_OFFSET = 0x4C; constexpr uint32_t READBACK_OFFSET = 0x50; constexpr uint32_t DIO_MIRROR_WINDOW = 0x1000; // Relative to the DIO register map constexpr uint32_t DIO_DIRECTION_REG = 0x4; } // namespace gpio_regmap // There are two ports, each with 12 pins constexpr size_t NUM_PORTS = 2; constexpr size_t NUM_PINS_PER_PORT = 12; // Start of Port B pin numbers relative to Port A: constexpr size_t PORT_NUMBER_OFFSET = 16; // These values should match the values in MPM's x4xx_periphs.py "DIO_PORT_MAP" constexpr uint32_t PORTA_MAPPING[12] = {1, 0, 2, 3, 5, 4, 6, 7, 9, 8, 10, 11}; constexpr uint32_t PORTB_MAPPING[12] = {10, 11, 9, 8, 6, 7, 5, 4, 2, 3, 1, 0}; } // namespace const char* uhd::rfnoc::x400::GPIO_BANK_NAME = "GPIO"; gpio_control::gpio_control(uhd::usrp::x400_rpc_iface::sptr rpcc, uhd::rfnoc::mpmd_mb_controller::sptr mb_control, uhd::wb_iface::sptr iface) : _rpcc(rpcc), _mb_control(mb_control), _regs(iface) { _rpcc->dio_set_port_mapping("DIO"); _rpcc->dio_set_voltage_level("PORTA", "3V3"); _rpcc->dio_set_voltage_level("PORTB", "3V3"); // Hardcode new ATR (channel ATRs are combined into 4-bit index) // Note that we emulate classic ATR _regs->poke32(gpio_regmap::CLASSIC_MODE_OFFSET, 0x0); // Initialize everything as inputs _rpcc->dio_set_pin_directions("PORTA", 0x0); _rpcc->dio_set_pin_directions("PORTB", 0x0); for (size_t bank = 0; bank < 4; bank++) { const wb_iface::wb_addr_type atr_base = bank * gpio_regmap::ATR_STRIDE; usrp::gpio_atr::gpio_atr_offsets regmap{ atr_base + gpio_regmap::ATR_IDLE_OFFSET, atr_base + gpio_regmap::ATR_RX_OFFSET, atr_base + gpio_regmap::ATR_TX_OFFSET, atr_base + gpio_regmap::ATR_XX_OFFSET, gpio_regmap::DDR_OFFSET, gpio_regmap::DISABLED_OFFSET, gpio_regmap::READBACK_OFFSET, }; _gpios.push_back(usrp::gpio_atr::gpio_atr_3000::make(_regs, regmap)); } } void gpio_control::set_gpio_attr( const uhd::usrp::gpio_atr::gpio_attr_t attr, const uint32_t value) { if (attr == uhd::usrp::gpio_atr::GPIO_DDR) { // We have to adjust the MB CPLD as well. MPM takes care of coordinating // the FPGA and the CPLD. _rpcc->dio_set_pin_directions("PORTA", value & 0xFFF); _rpcc->dio_set_pin_directions("PORTB", value >> 12); } if (is_atr_attr(attr)) { const uint32_t rf1_mask = build_rf1_mask(); for (size_t i = 0; i < 4; i++) { const uint32_t previous_value = unmap_dio(_gpios[i]->get_attr_reg(attr)); const uint32_t new_value = (previous_value & rf1_mask) | (value & ~rf1_mask); _gpios[i]->set_gpio_attr(attr, map_dio(new_value)); } // Set the RF1 settings for (const auto subattr : {uhd::usrp::gpio_atr::GPIO_ATR_0X, uhd::usrp::gpio_atr::GPIO_ATR_RX, uhd::usrp::gpio_atr::GPIO_ATR_TX, uhd::usrp::gpio_atr::GPIO_ATR_XX}) { const uint32_t previous_value = unmap_dio(_gpios[atr_attr_index(attr)]->get_attr_reg(subattr)); const uint32_t new_value = (previous_value & ~rf1_mask) | (value & rf1_mask); _gpios[atr_attr_index(attr)]->set_gpio_attr(subattr, map_dio(new_value)); } } else { const uint32_t internal_value = map_dio(value); _gpios[0]->set_gpio_attr(attr, internal_value); } } uint32_t gpio_control::build_rf1_mask() { auto porta_sources = _mb_control->get_gpio_src("GPIO0"); auto portb_sources = _mb_control->get_gpio_src("GPIO1"); uint32_t rf1_mask = 0; for (size_t i = 0; i < 12; i++) { if (porta_sources[i].find("RF1") != std::string::npos) { rf1_mask |= 1 << i; } if (portb_sources[i].find("RF1") != std::string::npos) { rf1_mask |= 1 << (i + 12); } } return rf1_mask; } size_t gpio_control::atr_attr_index(const uhd::usrp::gpio_atr::gpio_attr_t attr) { return attr == uhd::usrp::gpio_atr::GPIO_ATR_0X ? 0 : attr == uhd::usrp::gpio_atr::GPIO_ATR_RX ? 1 : attr == uhd::usrp::gpio_atr::GPIO_ATR_TX ? 2 : attr == uhd::usrp::gpio_atr::GPIO_ATR_XX ? 3 : 0; } bool gpio_control::is_atr_attr(const uhd::usrp::gpio_atr::gpio_attr_t attr) { return attr == uhd::usrp::gpio_atr::GPIO_ATR_0X || attr == uhd::usrp::gpio_atr::GPIO_ATR_RX || attr == uhd::usrp::gpio_atr::GPIO_ATR_TX || attr == uhd::usrp::gpio_atr::GPIO_ATR_XX; } uint32_t gpio_control::unmap_dio(const uint32_t raw_form) { uint32_t result = 0; for (size_t i = 0; i < NUM_PINS_PER_PORT; i++) { if ((raw_form & (1 << i)) != 0) { result |= 1 << _mapper.unmap_value(i); } } for (size_t i = PORT_NUMBER_OFFSET; i < PORT_NUMBER_OFFSET + NUM_PINS_PER_PORT; i++) { if ((raw_form & (1 << i)) != 0) { result |= 1 << _mapper.unmap_value(i); } } return result; } uint32_t gpio_control::map_dio(const uint32_t user_form) { uint32_t result = 0; for (size_t i = 0; i < NUM_PORTS * NUM_PINS_PER_PORT; i++) { if ((user_form & (1 << i)) != 0) { result |= 1 << _mapper.map_value(i); } } return result; } uint32_t gpio_control::get_gpio_attr(const uhd::usrp::gpio_atr::gpio_attr_t attr) { if (attr == uhd::usrp::gpio_atr::GPIO_DDR) { // Retrieve the actual state from the FPGA mirror of the CPLD state const uint32_t raw_value = _regs->peek32( gpio_regmap::DIO_MIRROR_WINDOW + gpio_regmap::DIO_DIRECTION_REG); return unmap_dio(raw_value); } if (is_atr_attr(attr)) { const uint32_t rf1_mask = build_rf1_mask(); // Grab the values for each channel const uint32_t rf0_atr = unmap_dio(_gpios[0]->get_attr_reg(attr)); const uint32_t rf1_atr = unmap_dio( _gpios[atr_attr_index(attr)]->get_attr_reg(uhd::usrp::gpio_atr::GPIO_ATR_0X)); return (rf0_atr & ~rf1_mask) | (rf1_atr & rf1_mask); } const uint32_t raw_value = _gpios[0]->get_attr_reg(attr); return unmap_dio(raw_value); } uint32_t uhd::rfnoc::x400::x400_gpio_port_mapping::map_value(const uint32_t& value) { const uint32_t bank = value >= NUM_PINS_PER_PORT ? 1 : 0; uint32_t pin_intern = value % NUM_PINS_PER_PORT; const uint32_t* const mapping = bank == 1 ? PORTB_MAPPING : PORTA_MAPPING; for (size_t i = 0; i < NUM_PINS_PER_PORT; i++) { if (mapping[i] == pin_intern) { return i + (bank * PORT_NUMBER_OFFSET); } } throw uhd::lookup_error( std::string("Could not find corresponding GPIO pin number for given SPI pin ") + std::to_string(value)); } uint32_t uhd::rfnoc::x400::x400_gpio_port_mapping::unmap_value(const uint32_t& value) { const uint32_t bank = value >= PORT_NUMBER_OFFSET ? 1 : 0; uint32_t pin_number = value % PORT_NUMBER_OFFSET; const uint32_t* const mapping = bank == 1 ? PORTB_MAPPING : PORTA_MAPPING; UHD_ASSERT_THROW(pin_number < NUM_PINS_PER_PORT); return mapping[pin_number] + (bank * NUM_PINS_PER_PORT); }