// // Copyright 2015-2016 Ettus Research // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "x300_radio_ctrl_impl.hpp" #include "x300_dboard_iface.hpp" #include "wb_iface_adapter.hpp" #include "gpio_atr_3000.hpp" #include "apply_corrections.hpp" #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::rfnoc; using namespace uhd::usrp::x300; static const size_t IO_MASTER_RADIO = 0; /**************************************************************************** * Structors ***************************************************************************/ UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(x300_radio_ctrl) , _ignore_cal_file(false) { UHD_RFNOC_BLOCK_TRACE() << "x300_radio_ctrl_impl::ctor() " << std::endl; //////////////////////////////////////////////////////////////////// // Set up basic info //////////////////////////////////////////////////////////////////// _radio_type = (get_block_id().get_block_count() == 0) ? PRIMARY : SECONDARY; _radio_slot = (get_block_id().get_block_count() == 0) ? "A" : "B"; _radio_clk_rate = _tree->access("master_clock_rate").get(); //////////////////////////////////////////////////////////////////// // Set up peripherals //////////////////////////////////////////////////////////////////// wb_iface::sptr ctrl = _get_ctrl(IO_MASTER_RADIO); _regs = boost::make_shared(_radio_type==PRIMARY?0:1); _regs->initialize(*ctrl, true); //Only Radio0 has the ADC/DAC reset bits. Those bits are reserved for Radio1 if (_radio_type==PRIMARY) { _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0); _regs->misc_outs_reg.flush(); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1); _regs->misc_outs_reg.flush(); } _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 1); //////////////////////////////////////////////////////////////// // Setup peripherals //////////////////////////////////////////////////////////////// _spi = spi_core_3000::make(ctrl, radio_ctrl_impl::regs::sr_addr(radio_ctrl_impl::regs::SPI), radio_ctrl_impl::regs::RB_SPI); _leds = gpio_atr::gpio_atr_3000::make_write_only(ctrl, regs::sr_addr(regs::LEDS)); _leds->set_atr_mode(usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL); _adc = x300_adc_ctrl::make(_spi, DB_ADC_SEN); _dac = x300_dac_ctrl::make(_spi, DB_DAC_SEN, _radio_clk_rate); if (_radio_type==PRIMARY) { _fp_gpio = gpio_atr::gpio_atr_3000::make(ctrl, regs::sr_addr(regs::FP_GPIO), regs::RB_FP_GPIO); BOOST_FOREACH(const gpio_atr::gpio_attr_map_t::value_type attr, gpio_atr::gpio_attr_map) { _tree->create(fs_path("gpio") / "FP0" / attr.second) .set(0) .add_coerced_subscriber(boost::bind(&gpio_atr::gpio_atr_3000::set_gpio_attr, _fp_gpio, attr.first, _1)); } _tree->create(fs_path("gpio") / "FP0" / "READBACK") .set_publisher(boost::bind(&gpio_atr::gpio_atr_3000::read_gpio, _fp_gpio)); } //////////////////////////////////////////////////////////////// // create legacy codec control objects //////////////////////////////////////////////////////////////// _tree->create("rx_codecs" / _radio_slot / "gains"); //phony property so this dir exists _tree->create("tx_codecs" / _radio_slot / "gains"); //phony property so this dir exists _tree->create("rx_codecs" / _radio_slot / "name").set("ads62p48"); _tree->create("tx_codecs" / _radio_slot / "name").set("ad9146"); _tree->create("rx_codecs" / _radio_slot / "gains" / "digital" / "range").set(meta_range_t(0, 6.0, 0.5)); _tree->create("rx_codecs" / _radio_slot / "gains" / "digital" / "value") .add_coerced_subscriber(boost::bind(&x300_adc_ctrl::set_gain, _adc, _1)).set(0) ; //////////////////////////////////////////////////////////////// // create front-end objects //////////////////////////////////////////////////////////////// for (size_t i = 0; i < _get_num_radios(); i++) { _rx_fe_map[i].core = rx_frontend_core_3000::make(_get_ctrl(i), regs::sr_addr(x300_regs::RX_FE_BASE)); _rx_fe_map[i].core->set_adc_rate(_radio_clk_rate); _rx_fe_map[i].core->set_dc_offset(rx_frontend_core_3000::DEFAULT_DC_OFFSET_VALUE); _rx_fe_map[i].core->set_dc_offset_auto(rx_frontend_core_3000::DEFAULT_DC_OFFSET_ENABLE); _rx_fe_map[i].core->populate_subtree(_tree->subtree(_root_path / "rx_fe_corrections" / i)); _tx_fe_map[i].core = tx_frontend_core_200::make(_get_ctrl(i), regs::sr_addr(x300_regs::TX_FE_BASE)); _tx_fe_map[i].core->set_dc_offset(tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE); _tx_fe_map[i].core->set_iq_balance(tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE); _tx_fe_map[i].core->populate_subtree(_tree->subtree(_root_path / "tx_fe_corrections" / i)); } //////////////////////////////////////////////////////////////// // Update default SPP (overwrites the default value from the XML file) //////////////////////////////////////////////////////////////// const size_t max_bytes_header = uhd::transport::vrt::chdr::max_if_hdr_words64 * sizeof(uint64_t); const size_t default_spp = (_tree->access("mtu/recv").get() - max_bytes_header) / (2 * sizeof(int16_t)); _tree->access(get_arg_path("spp") / "value").set(default_spp); } x300_radio_ctrl_impl::~x300_radio_ctrl_impl() { // Tear down our part of the tree: _tree->remove(fs_path("rx_codecs" / _radio_slot)); _tree->remove(fs_path("tx_codecs" / _radio_slot)); _tree->remove(_root_path / "rx_fe_corrections"); _tree->remove(_root_path / "tx_fe_corrections"); if (_radio_type==PRIMARY) { BOOST_FOREACH(const gpio_atr::gpio_attr_map_t::value_type attr, gpio_atr::gpio_attr_map) { _tree->remove(fs_path("gpio") / "FP0" / attr.second); } _tree->remove(fs_path("gpio") / "FP0" / "READBACK"); } // Reset peripherals if (_radio_type==PRIMARY) { _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0); } _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::DAC_ENABLED, 0); _regs->misc_outs_reg.flush(); } /**************************************************************************** * API calls ***************************************************************************/ double x300_radio_ctrl_impl::set_rate(double /* rate */) { // On X3x0, tick rate can't actually be changed at runtime return get_rate(); } void x300_radio_ctrl_impl::set_tx_antenna(const std::string &ant, const size_t chan) { _tree->access( fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "antenna" / "value") ).set(ant); } void x300_radio_ctrl_impl::set_rx_antenna(const std::string &ant, const size_t chan) { _tree->access( fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "antenna" / "value") ).set(ant); } double x300_radio_ctrl_impl::set_tx_frequency(const double freq, const size_t chan) { return _tree->access( fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "freq" / "value") ).set(freq).get(); } double x300_radio_ctrl_impl::get_tx_frequency(const size_t chan) { return _tree->access( fs_path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "freq" / "value") ).get(); } double x300_radio_ctrl_impl::set_rx_frequency(const double freq, const size_t chan) { return _tree->access( fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "freq" / "value") ).set(freq).get(); } double x300_radio_ctrl_impl::get_rx_frequency(const size_t chan) { return _tree->access( fs_path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "freq" / "value") ).get(); } double x300_radio_ctrl_impl::set_tx_gain(const double gain, const size_t chan) { //TODO: This is extremely hacky! fs_path path("dboards" / _radio_slot / "tx_frontends" / _tx_fe_map.at(chan).db_fe_name / "gains"); std::vector gain_stages = _tree->list(path); if (gain_stages.size() == 1) { const double actual_gain = _tree->access(path / gain_stages[0] / "value").set(gain).get(); radio_ctrl_impl::set_tx_gain(actual_gain, chan); return gain; } else { UHD_MSG(warning) << "set_tx_gain: could not apply gain for this daughterboard."; radio_ctrl_impl::set_tx_gain(0.0, chan); return 0.0; } } double x300_radio_ctrl_impl::set_rx_gain(const double gain, const size_t chan) { //TODO: This is extremely hacky! fs_path path("dboards" / _radio_slot / "rx_frontends" / _rx_fe_map.at(chan).db_fe_name / "gains"); std::vector gain_stages = _tree->list(path); if (gain_stages.size() == 1) { const double actual_gain = _tree->access(path / gain_stages[0] / "value").set(gain).get(); radio_ctrl_impl::set_rx_gain(actual_gain, chan); return gain; } else { UHD_MSG(warning) << "set_rx_gain: could not apply gain for this daughterboard."; radio_ctrl_impl::set_tx_gain(0.0, chan); return 0.0; } } template static size_t _get_chan_from_map(std::map map, const std::string &fe) { // TODO replace with 'auto' when possible typedef typename std::map::iterator chan_iterator; for (chan_iterator it = map.begin(); it != map.end(); ++it) { if (it->second.db_fe_name == fe) { return it->first; } } throw uhd::runtime_error(str( boost::format("Invalid daughterboard frontend name: %s") % fe )); } size_t x300_radio_ctrl_impl::get_chan_from_dboard_fe(const std::string &fe, const uhd::direction_t direction) { switch (direction) { case uhd::TX_DIRECTION: return _get_chan_from_map(_tx_fe_map, fe); case uhd::RX_DIRECTION: return _get_chan_from_map(_rx_fe_map, fe); default: UHD_THROW_INVALID_CODE_PATH(); } } std::string x300_radio_ctrl_impl::get_dboard_fe_from_chan(const size_t chan, const uhd::direction_t direction) { switch (direction) { case uhd::TX_DIRECTION: return _tx_fe_map.at(chan).db_fe_name; case uhd::RX_DIRECTION: return _rx_fe_map.at(chan).db_fe_name; default: UHD_THROW_INVALID_CODE_PATH(); } } double x300_radio_ctrl_impl::get_output_samp_rate(size_t chan) { // TODO: chan should never be ANY_PORT, but due to our current graph search // method, this can actually happen: if (chan == ANY_PORT) { chan = 0; for (size_t i = 0; i < _get_num_radios(); i++) { if (_is_streamer_active(uhd::RX_DIRECTION, chan)) { chan = i; break; } } } return _rx_fe_map.at(chan).core->get_output_rate(); } /**************************************************************************** * Radio control and setup ***************************************************************************/ void x300_radio_ctrl_impl::setup_radio(uhd::i2c_iface::sptr zpu_i2c, x300_clock_ctrl::sptr clock, bool verbose) { _self_cal_adc_capture_delay(verbose); //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// static const size_t BASE_ADDR = 0x50; static const size_t RX_EEPROM_ADDR = 0x5; static const size_t TX_EEPROM_ADDR = 0x4; static const size_t GDB_EEPROM_ADDR = 0x1; const static std::vector EEPROM_ADDRS = boost::assign::list_of(RX_EEPROM_ADDR)(TX_EEPROM_ADDR)(GDB_EEPROM_ADDR); const static std::vector EEPROM_PATHS = boost::assign::list_of("rx_eeprom")("tx_eeprom")("gdb_eeprom"); const size_t DB_OFFSET = (_radio_slot == "A") ? 0x0 : 0x2; const fs_path db_path = ("dboards" / _radio_slot); for (size_t i = 0; i < EEPROM_ADDRS.size(); i++) { const size_t addr = EEPROM_ADDRS[i] + DB_OFFSET; //Load EEPROM _db_eeproms[addr].load(*zpu_i2c, BASE_ADDR | addr); //Add to tree _tree->create(db_path / EEPROM_PATHS[i]) .set(_db_eeproms[addr]) .add_coerced_subscriber(boost::bind(&dboard_eeprom_t::store, _db_eeproms[addr], boost::ref(*zpu_i2c), (BASE_ADDR | addr))); } //create a new dboard interface x300_dboard_iface_config_t db_config; db_config.gpio = gpio_atr::db_gpio_atr_3000::make(_get_ctrl(IO_MASTER_RADIO), radio_ctrl_impl::regs::sr_addr(radio_ctrl_impl::regs::GPIO), radio_ctrl_impl::regs::RB_DB_GPIO); db_config.spi = _spi; db_config.rx_spi_slaveno = DB_RX_SEN; db_config.tx_spi_slaveno = DB_TX_SEN; db_config.i2c = zpu_i2c; db_config.clock = clock; db_config.which_rx_clk = (_radio_slot == "A") ? X300_CLOCK_WHICH_DB0_RX : X300_CLOCK_WHICH_DB1_RX; db_config.which_tx_clk = (_radio_slot == "A") ? X300_CLOCK_WHICH_DB0_TX : X300_CLOCK_WHICH_DB1_TX; db_config.dboard_slot = (_radio_slot == "A")? 0 : 1; db_config.cmd_time_ctrl = _get_ctrl(IO_MASTER_RADIO); //create a new dboard manager boost::shared_ptr db_iface = boost::make_shared(db_config); _db_manager = dboard_manager::make( _db_eeproms[RX_EEPROM_ADDR + DB_OFFSET].id, _db_eeproms[TX_EEPROM_ADDR + DB_OFFSET].id, _db_eeproms[GDB_EEPROM_ADDR + DB_OFFSET].id, db_iface, _tree->subtree(db_path), true // defer daughterboard intitialization ); size_t rx_chan = 0, tx_chan = 0; BOOST_FOREACH(const std::string& fe, _db_manager->get_rx_frontends()) { if (rx_chan >= _get_num_radios()) { break; } _rx_fe_map[rx_chan].db_fe_name = fe; db_iface->add_rx_fe(fe, _rx_fe_map[rx_chan].core); const fs_path fe_path(db_path / "rx_frontends" / fe); const std::string conn = _tree->access(fe_path / "connection").get(); const double if_freq = (_tree->exists(fe_path / "if_freq/value")) ? _tree->access(fe_path / "if_freq/value").get() : 0.0; _rx_fe_map[rx_chan].core->set_fe_connection(usrp::fe_connection_t(conn, if_freq)); rx_chan++; } BOOST_FOREACH(const std::string& fe, _db_manager->get_tx_frontends()) { if (tx_chan >= _get_num_radios()) { break; } _tx_fe_map[tx_chan].db_fe_name = fe; const fs_path fe_path(db_path / "tx_frontends" / fe); const std::string conn = _tree->access(fe_path / "connection").get(); _tx_fe_map[tx_chan].core->set_mux(conn); tx_chan++; } UHD_ASSERT_THROW(rx_chan or tx_chan); // Initialize the daughterboards now that frontend cores and connections exist _db_manager->initialize_dboards(); //now that dboard is created -- register into rx antenna event if (not _rx_fe_map.empty() and _tree->exists(db_path / "rx_frontends" / _rx_fe_map[0].db_fe_name / "antenna" / "value")) { _tree->access(db_path / "rx_frontends" / _rx_fe_map[0].db_fe_name / "antenna" / "value") .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::_update_atr_leds, this, _1)); } _update_atr_leds(""); //init anyway, even if never called //bind frontend corrections to the dboard freq props const fs_path db_tx_fe_path = db_path / "tx_frontends"; BOOST_FOREACH(const std::string &name, _tree->list(db_tx_fe_path)) { _tree->access(db_tx_fe_path / name / "freq" / "value") .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::set_tx_fe_corrections, this, db_path, _root_path / "tx_fe_corrections" / name, _1)); } const fs_path db_rx_fe_path = db_path / "rx_frontends"; BOOST_FOREACH(const std::string &name, _tree->list(db_rx_fe_path)) { _tree->access(db_rx_fe_path / name / "freq" / "value") .add_coerced_subscriber(boost::bind(&x300_radio_ctrl_impl::set_rx_fe_corrections, this, db_path, _root_path / "rx_fe_corrections" / name,_1)); } //////////////////////////////////////////////////////////////// // Set tick rate //////////////////////////////////////////////////////////////// const double tick_rate = get_output_samp_rate(0); if (_radio_type==PRIMARY) { // Slot A is the highlander timekeeper _tree->access("tick_rate").set(tick_rate); } radio_ctrl_impl::set_rate(tick_rate); } void x300_radio_ctrl_impl::set_rx_fe_corrections( const fs_path &db_path, const fs_path &rx_fe_corr_path, const double lo_freq ) { if (not _ignore_cal_file) { apply_rx_fe_corrections(_tree, db_path, rx_fe_corr_path, lo_freq); } } void x300_radio_ctrl_impl::set_tx_fe_corrections( const fs_path &db_path, const fs_path &tx_fe_corr_path, const double lo_freq ) { if (not _ignore_cal_file) { apply_tx_fe_corrections(_tree, db_path, tx_fe_corr_path, lo_freq); } } void x300_radio_ctrl_impl::reset_codec() { if (_radio_type==PRIMARY) { //ADC/DAC reset lines only exist in Radio0 _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 1); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 0); _regs->misc_outs_reg.flush(); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::ADC_RESET, 0); _regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_RESET_N, 1); _regs->misc_outs_reg.flush(); } UHD_ASSERT_THROW(bool(_adc)); UHD_ASSERT_THROW(bool(_dac)); _adc->reset(); _dac->reset(); } void x300_radio_ctrl_impl::self_test_adc(boost::uint32_t ramp_time_ms) { //Bypass all front-end corrections for (size_t i = 0; i < _get_num_radios(); i++) { _rx_fe_map[i].core->bypass_all(true); } //Test basic patterns _adc->set_test_word("ones", "ones"); _check_adc(0xfffcfffc); _adc->set_test_word("zeros", "zeros"); _check_adc(0x00000000); _adc->set_test_word("ones", "zeros"); _check_adc(0xfffc0000); _adc->set_test_word("zeros", "ones"); _check_adc(0x0000fffc); for (size_t k = 0; k < 14; k++) { _adc->set_test_word("zeros", "custom", 1 << k); _check_adc(1 << (k+2)); } for (size_t k = 0; k < 14; k++) { _adc->set_test_word("custom", "zeros", 1 << k); _check_adc(1 << (k+18)); } //Turn on ramp pattern test _adc->set_test_word("ramp", "ramp"); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); //Sleep added for SPI transactions to finish and ramp to start before checker is enabled. boost::this_thread::sleep(boost::posix_time::microsec(1000)); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1); boost::this_thread::sleep(boost::posix_time::milliseconds(ramp_time_ms)); _regs->misc_ins_reg.refresh(); std::string i_status, q_status; if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED)) if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR)) i_status = "Bit Errors!"; else i_status = "Good"; else i_status = "Not Locked!"; if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED)) if (_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR)) q_status = "Bit Errors!"; else q_status = "Good"; else q_status = "Not Locked!"; //Return to normal mode _adc->set_test_word("normal", "normal"); if ((i_status != "Good") or (q_status != "Good")) { throw uhd::runtime_error( (boost::format("ADC self-test failed for %s. Ramp checker status: {ADC_A=%s, ADC_B=%s}")%unique_id()%i_status%q_status).str()); } //Restore front-end corrections for (size_t i = 0; i < _get_num_radios(); i++) { _rx_fe_map[i].core->bypass_all(false); } } void x300_radio_ctrl_impl::extended_adc_test(const std::vector& radios, double duration_s) { static const size_t SECS_PER_ITER = 5; UHD_MSG(status) << boost::format("Running Extended ADC Self-Test (Duration=%.0fs, %ds/iteration)...\n") % duration_s % SECS_PER_ITER; size_t num_iters = static_cast(ceil(duration_s/SECS_PER_ITER)); size_t num_failures = 0; for (size_t iter = 0; iter < num_iters; iter++) { //Print date and time boost::posix_time::time_facet *facet = new boost::posix_time::time_facet("%d-%b-%Y %H:%M:%S"); std::ostringstream time_strm; time_strm.imbue(std::locale(std::locale::classic(), facet)); time_strm << boost::posix_time::second_clock::local_time(); //Run self-test UHD_MSG(status) << boost::format("-- [%s] Iteration %06d... ") % time_strm.str() % (iter+1); try { for (size_t i = 0; i < radios.size(); i++) { radios[i]->self_test_adc((SECS_PER_ITER*1000)/radios.size()); } UHD_MSG(status) << "passed" << std::endl; } catch(std::exception &e) { num_failures++; UHD_MSG(status) << e.what() << std::endl; } } if (num_failures == 0) { UHD_MSG(status) << "Extended ADC Self-Test PASSED\n"; } else { throw uhd::runtime_error( (boost::format("Extended ADC Self-Test FAILED!!! (%d/%d failures)\n") % num_failures % num_iters).str()); } } void x300_radio_ctrl_impl::synchronize_dacs(const std::vector& radios) { if (radios.size() < 2) return; //Nothing to synchronize //**PRECONDITION** //This function assumes that all the VITA times in "radios" are synchronized //to a common reference. Currently, this function is called in get_tx_stream //which also has the same precondition. //Reinitialize and resync all DACs for (size_t i = 0; i < radios.size(); i++) { radios[i]->_dac->reset(); } //Get a rough estimate of the cumulative command latency boost::posix_time::ptime t_start = boost::posix_time::microsec_clock::local_time(); for (size_t i = 0; i < radios.size(); i++) { radios[i]->user_reg_read64(regs::RB_TIME_NOW); //Discard value. We are just timing the call } boost::posix_time::time_duration t_elapsed = boost::posix_time::microsec_clock::local_time() - t_start; //Add 100% of headroom + uncertaintly to the command time boost::uint64_t t_sync_us = (t_elapsed.total_microseconds() * 2) + 13000 /*Scheduler latency*/; //Pick radios[0] as the time reference. uhd::time_spec_t sync_time = radios[0]->_time64->get_time_now() + uhd::time_spec_t(((double)t_sync_us)/1e6); //Send the sync command for (size_t i = 0; i < radios.size(); i++) { radios[i]->set_command_tick_rate(radios[i]->_radio_clk_rate, IO_MASTER_RADIO); radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 0); radios[i]->set_command_time(sync_time, IO_MASTER_RADIO); //Arm FRAMEP/N sync pulse by asserting a rising edge radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 1); radios[i]->_regs->misc_outs_reg.set(radio_regmap_t::misc_outs_reg_t::DAC_SYNC, 0); radios[i]->set_command_time(uhd::time_spec_t(0.0), IO_MASTER_RADIO); } //Wait and check status boost::this_thread::sleep(boost::posix_time::microseconds(t_sync_us)); for (size_t i = 0; i < radios.size(); i++) { radios[i]->_dac->verify_sync(); } } double x300_radio_ctrl_impl::self_cal_adc_xfer_delay( const std::vector& radios, x300_clock_ctrl::sptr clock, boost::function wait_for_clk_locked, bool apply_delay) { UHD_MSG(status) << "Running ADC transfer delay self-cal: " << std::flush; //Effective resolution of the self-cal. static const size_t NUM_DELAY_STEPS = 100; double master_clk_period = (1.0e9 / clock->get_master_clock_rate()); //in ns double delay_start = 0.0; double delay_range = 2 * master_clk_period; double delay_incr = delay_range / NUM_DELAY_STEPS; UHD_MSG(status) << "Measuring..." << std::flush; double cached_clk_delay = clock->get_clock_delay(X300_CLOCK_WHICH_ADC0); double fpga_clk_delay = clock->get_clock_delay(X300_CLOCK_WHICH_FPGA); //Iterate through several values of delays and measure ADC data integrity std::vector< std::pair > results; for (size_t i = 0; i < NUM_DELAY_STEPS; i++) { //Delay the ADC clock (will set both Ch0 and Ch1 delays) double delay = clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, delay_incr*i + delay_start); wait_for_clk_locked(0.1); boost::uint32_t err_code = 0; for (size_t r = 0; r < radios.size(); r++) { //Test each channel (I and Q) individually so as to not accidentally trigger //on the data from the other channel if there is a swap // -- Test I Channel -- //Put ADC in ramp test mode. Tie the other channel to all ones. radios[r]->_adc->set_test_word("ramp", "ones"); //Turn on the pattern checker in the FPGA. It will lock when it sees a zero //and count deviations from the expected value radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1); //50ms @ 200MHz = 10 million samples boost::this_thread::sleep(boost::posix_time::milliseconds(50)); if (radios[r]->_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED)) { err_code += radios[r]->_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR); } else { err_code += 100; //Increment error code by 100 to indicate no lock } // -- Test Q Channel -- //Put ADC in ramp test mode. Tie the other channel to all ones. radios[r]->_adc->set_test_word("ones", "ramp"); //Turn on the pattern checker in the FPGA. It will lock when it sees a zero //and count deviations from the expected value radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1); //50ms @ 200MHz = 10 million samples boost::this_thread::sleep(boost::posix_time::milliseconds(50)); if (radios[r]->_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED)) { err_code += radios[r]->_regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR); } else { err_code += 100; //Increment error code by 100 to indicate no lock } } //UHD_MSG(status) << (boost::format("XferDelay=%fns, Error=%d\n") % delay % err_code); results.push_back(std::pair(delay, err_code==0)); } //Calculate the valid window int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1; for (size_t i = 0; i < results.size(); i++) { std::pair& item = results[i]; if (item.second) { //If data is stable if (cur_start_idx == -1) { //This is the first window cur_start_idx = i; cur_stop_idx = i; } else { //We are extending the window cur_stop_idx = i; } } else { if (cur_start_idx == -1) { //We haven't yet seen valid data //Do nothing } else if (win_start_idx == -1) { //We passed the first valid window win_start_idx = cur_start_idx; win_stop_idx = cur_stop_idx; } else { //Update cached window if current window is larger double cur_win_len = results[cur_stop_idx].first - results[cur_start_idx].first; double cached_win_len = results[win_stop_idx].first - results[win_start_idx].first; if (cur_win_len > cached_win_len) { win_start_idx = cur_start_idx; win_stop_idx = cur_stop_idx; } } //Reset current window cur_start_idx = -1; cur_stop_idx = -1; } } if (win_start_idx == -1) { throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Convergence error."); } double win_center = (results[win_stop_idx].first + results[win_start_idx].first) / 2.0; double win_length = results[win_stop_idx].first - results[win_start_idx].first; if (win_length < master_clk_period/4) { throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Valid window too narrow."); } //Cycle slip the relative delay by a clock cycle to prevent sample misalignment //fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need bool cycle_slip = (win_center-fpga_clk_delay >= master_clk_period); if (cycle_slip) { win_center -= master_clk_period; } if (apply_delay) { UHD_MSG(status) << "Validating..." << std::flush; //Apply delay win_center = clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, win_center); //Sets ADC0 and ADC1 wait_for_clk_locked(0.1); //Validate for (size_t r = 0; r < radios.size(); r++) { radios[r]->self_test_adc(2000); } } else { //Restore delay clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, cached_clk_delay); //Sets ADC0 and ADC1 } //Teardown for (size_t r = 0; r < radios.size(); r++) { radios[r]->_adc->set_test_word("normal", "normal"); radios[r]->_regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); } UHD_MSG(status) << (boost::format(" done (FPGA->ADC=%.3fns%s, Window=%.3fns)\n") % (win_center-fpga_clk_delay) % (cycle_slip?" +cyc":"") % win_length); return win_center; } /**************************************************************************** * Helpers ***************************************************************************/ void x300_radio_ctrl_impl::_update_atr_leds(const std::string &rx_ant) { const bool is_txrx = (rx_ant == "TX/RX"); const int rx_led = (1 << 2); const int tx_led = (1 << 1); const int txrx_led = (1 << 0); _leds->set_atr_reg(gpio_atr::ATR_REG_IDLE, 0); _leds->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, is_txrx? txrx_led : rx_led); _leds->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, tx_led); _leds->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX, rx_led | tx_led); } void x300_radio_ctrl_impl::_self_cal_adc_capture_delay(bool print_status) { if (print_status) UHD_MSG(status) << "Running ADC capture delay self-cal..." << std::flush; static const boost::uint32_t NUM_DELAY_STEPS = 32; //The IDELAYE2 element has 32 steps static const boost::uint32_t NUM_RETRIES = 2; //Retry self-cal if it fails in warmup situations static const boost::int32_t MIN_WINDOW_LEN = 4; boost::int32_t win_start = -1, win_stop = -1; boost::uint32_t iter = 0; while (iter++ < NUM_RETRIES) { for (boost::uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) { //Apply delay _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, dly_tap); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0); boost::uint32_t err_code = 0; // -- Test I Channel -- //Put ADC in ramp test mode. Tie the other channel to all ones. _adc->set_test_word("ramp", "ones"); //Turn on the pattern checker in the FPGA. It will lock when it sees a zero //and count deviations from the expected value _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1); //10ms @ 200MHz = 2 million samples boost::this_thread::sleep(boost::posix_time::milliseconds(10)); if (_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_LOCKED)) { err_code += _regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_ERROR); } else { err_code += 100; //Increment error code by 100 to indicate no lock } // -- Test Q Channel -- //Put ADC in ramp test mode. Tie the other channel to all ones. _adc->set_test_word("ones", "ramp"); //Turn on the pattern checker in the FPGA. It will lock when it sees a zero //and count deviations from the expected value _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1); //10ms @ 200MHz = 2 million samples boost::this_thread::sleep(boost::posix_time::milliseconds(10)); if (_regs->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_LOCKED)) { err_code += _regs->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_ERROR); } else { err_code += 100; //Increment error code by 100 to indicate no lock } if (err_code == 0) { if (win_start == -1) { //This is the first window win_start = dly_tap; win_stop = dly_tap; } else { //We are extending the window win_stop = dly_tap; } } else { if (win_start != -1) { //A valid window turned invalid if (win_stop - win_start >= MIN_WINDOW_LEN) { break; //Valid window found } else { win_start = -1; //Reset window } } } //UHD_MSG(status) << (boost::format("CapTap=%d, Error=%d\n") % dly_tap % err_code); } //Retry the self-cal if it fails if ((win_start == -1 || (win_stop - win_start) < MIN_WINDOW_LEN) && iter < NUM_RETRIES /*not last iteration*/) { win_start = -1; win_stop = -1; boost::this_thread::sleep(boost::posix_time::milliseconds(2000)); } else { break; } } _adc->set_test_word("normal", "normal"); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0); if (win_start == -1) { throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Convergence error."); } if (win_stop-win_start < MIN_WINDOW_LEN) { throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Valid window too narrow."); } boost::uint32_t ideal_tap = (win_stop + win_start) / 2; _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, ideal_tap); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1); _regs->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0); if (print_status) { double tap_delay = (1.0e12 / _radio_clk_rate) / (2*32); //in ps UHD_MSG(status) << boost::format(" done (Tap=%d, Window=%d, TapDelay=%.3fps, Iter=%d)\n") % ideal_tap % (win_stop-win_start) % tap_delay % iter; } } void x300_radio_ctrl_impl::_check_adc(const boost::uint32_t val) { //Wait for previous control transaction to flush user_reg_read64(regs::RB_TEST); //Wait for ADC test pattern to propagate boost::this_thread::sleep(boost::posix_time::microsec(5)); //Read value of RX readback register and verify boost::uint32_t adc_rb = static_cast(user_reg_read64(regs::RB_TEST)>>32); adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA if (val != adc_rb) { throw uhd::runtime_error( (boost::format("ADC self-test failed for %s. (Exp=0x%x, Got=0x%x)")%unique_id()%val%adc_rb).str()); } } /**************************************************************************** * Helpers ***************************************************************************/ bool x300_radio_ctrl_impl::check_radio_config() { UHD_RFNOC_BLOCK_TRACE() << "x300_radio_ctrl_impl::check_radio_config() " << std::endl; const fs_path rx_fe_path = fs_path("dboards" / _radio_slot / "rx_frontends"); for (size_t chan = 0; chan < _get_num_radios(); chan++) { if (_tree->exists(rx_fe_path / _rx_fe_map.at(chan).db_fe_name / "enabled")) { const bool chan_active = _is_streamer_active(uhd::RX_DIRECTION, chan); if (chan_active) { _tree->access(rx_fe_path / _rx_fe_map.at(chan).db_fe_name / "enabled") .set(chan_active) ; } } } const fs_path tx_fe_path = fs_path("dboards" / _radio_slot / "tx_frontends"); for (size_t chan = 0; chan < _get_num_radios(); chan++) { if (_tree->exists(tx_fe_path / _tx_fe_map.at(chan).db_fe_name / "enabled")) { const bool chan_active = _is_streamer_active(uhd::TX_DIRECTION, chan); if (chan_active) { _tree->access(tx_fe_path / _tx_fe_map.at(chan).db_fe_name / "enabled") .set(chan_active) ; } } } return true; } /**************************************************************************** * Register block ***************************************************************************/ UHD_RFNOC_BLOCK_REGISTER(x300_radio_ctrl, "X300Radio");