// // Copyright 2013-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "x300_regs.hpp" #include "x300_impl.hpp" #include "validate_subdev_spec.hpp" #include "../../transport/super_recv_packet_handler.hpp" #include "../../transport/super_send_packet_handler.hpp" #include #include "async_packet_handler.hpp" #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; /*********************************************************************** * update streamer rates **********************************************************************/ void x300_impl::update_tick_rate(mboard_members_t &mb, const double rate) { BOOST_FOREACH(const size_t &dspno, mb.rx_streamers.keys()) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(mb.rx_streamers[dspno].lock()); if (my_streamer) my_streamer->set_tick_rate(rate); } BOOST_FOREACH(const size_t &dspno, mb.tx_streamers.keys()) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(mb.tx_streamers[dspno].lock()); if (my_streamer) my_streamer->set_tick_rate(rate); } } void x300_impl::update_rx_samp_rate(mboard_members_t &mb, const size_t dspno, const double rate) { if (not mb.rx_streamers.has_key(dspno)) return; boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(mb.rx_streamers[dspno].lock()); if (not my_streamer) return; my_streamer->set_samp_rate(rate); const double adj = mb.radio_perifs[dspno].ddc->get_scaling_adjustment(); my_streamer->set_scale_factor(adj); } void x300_impl::update_tx_samp_rate(mboard_members_t &mb, const size_t dspno, const double rate) { if (not mb.tx_streamers.has_key(dspno)) return; boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(mb.tx_streamers[dspno].lock()); if (not my_streamer) return; my_streamer->set_samp_rate(rate); const double adj = mb.radio_perifs[dspno].duc->get_scaling_adjustment(); my_streamer->set_scale_factor(adj); } /*********************************************************************** * Setup dboard muxing for IQ **********************************************************************/ void x300_impl::update_subdev_spec(const std::string &tx_rx, const size_t mb_i, const subdev_spec_t &spec) { UHD_ASSERT_THROW(tx_rx == "tx" or tx_rx == "rx"); UHD_ASSERT_THROW(mb_i < _mb.size()); const std::string mb_name = boost::lexical_cast(mb_i); fs_path mb_root = "/mboards/" + mb_name; //sanity checking validate_subdev_spec(_tree, spec, tx_rx, mb_name); UHD_ASSERT_THROW(spec.size() <= 2); if (spec.size() == 1) { UHD_ASSERT_THROW(spec[0].db_name == "A" || spec[0].db_name == "B"); } else if (spec.size() == 2) { UHD_ASSERT_THROW( (spec[0].db_name == "A" && spec[1].db_name == "B") || (spec[0].db_name == "B" && spec[1].db_name == "A") ); } std::vector chan_to_dsp_map(spec.size(), 0); // setup mux for this spec for (size_t i = 0; i < spec.size(); i++) { const int radio_idx = _mb[mb_i].get_radio_index(spec[i].db_name); chan_to_dsp_map[i] = radio_idx; //extract connection const fs_path fe_path(mb_root / "dboards" / spec[i].db_name / (tx_rx + "_frontends") / spec[i].sd_name); const std::string conn = _tree->access(fe_path / "connection").get(); if (tx_rx == "tx") { //swap condition _mb[mb_i].radio_perifs[radio_idx].tx_fe->set_mux(conn); } else { double if_freq = (_tree->exists(fe_path / "if_freq/value")) ? _tree->access(fe_path / "if_freq/value").get() : 0.0; _mb[mb_i].radio_perifs[radio_idx].ddc->set_mux(usrp::fe_connection_t(conn, if_freq)); _mb[mb_i].radio_perifs[radio_idx].rx_fe->set_mux(false); } } _tree->access >(mb_root / (tx_rx + "_chan_dsp_mapping")).set(chan_to_dsp_map); } /*********************************************************************** * RX flow control handler **********************************************************************/ static size_t get_rx_flow_control_window(size_t frame_size, size_t sw_buff_size, const device_addr_t& rx_args) { double fullness_factor = rx_args.cast("recv_buff_fullness", X300_RX_SW_BUFF_FULL_FACTOR); if (fullness_factor < 0.01 || fullness_factor > 1) { throw uhd::value_error("recv_buff_fullness must be between 0.01 and 1 inclusive (1% to 100%)"); } size_t window_in_pkts = (static_cast(sw_buff_size * fullness_factor) / frame_size); if (window_in_pkts == 0) { throw uhd::value_error("recv_buff_size must be larger than the recv_frame_size."); } return window_in_pkts; } static void handle_rx_flowctrl(const boost::uint32_t sid, zero_copy_if::sptr xport, bool big_endian, boost::shared_ptr seq32_state, const size_t last_seq) { managed_send_buffer::sptr buff = xport->get_send_buff(0.0); if (not buff) { throw uhd::runtime_error("handle_rx_flowctrl timed out getting a send buffer"); } boost::uint32_t *pkt = buff->cast(); //recover seq32 boost::uint32_t &seq32 = *seq32_state; const size_t seq12 = seq32 & 0xfff; if (last_seq < seq12) seq32 += (1 << 12); seq32 &= ~0xfff; seq32 |= last_seq; //load packet info vrt::if_packet_info_t packet_info; packet_info.packet_type = vrt::if_packet_info_t::PACKET_TYPE_CONTEXT; packet_info.num_payload_words32 = 2; packet_info.num_payload_bytes = packet_info.num_payload_words32*sizeof(boost::uint32_t); packet_info.packet_count = seq32; packet_info.sob = false; packet_info.eob = false; packet_info.sid = sid; packet_info.has_sid = true; packet_info.has_cid = false; packet_info.has_tsi = false; packet_info.has_tsf = false; packet_info.has_tlr = false; //load header if (big_endian) vrt::chdr::if_hdr_pack_be(pkt, packet_info); else vrt::chdr::if_hdr_pack_le(pkt, packet_info); //load payload pkt[packet_info.num_header_words32+0] = uhd::htonx(0); pkt[packet_info.num_header_words32+1] = uhd::htonx(seq32); //send the buffer over the interface buff->commit(sizeof(boost::uint32_t)*(packet_info.num_packet_words32)); } /*********************************************************************** * TX flow control handler **********************************************************************/ struct x300_tx_fc_guts_t { x300_tx_fc_guts_t(void): stream_channel(0), device_channel(0), last_seq_out(0), last_seq_ack(0), seq_queue(1){} size_t stream_channel; size_t device_channel; size_t last_seq_out; size_t last_seq_ack; bounded_buffer seq_queue; boost::shared_ptr async_queue; boost::shared_ptr old_async_queue; }; #define X300_ASYNC_EVENT_CODE_FLOW_CTRL 0 /*! * If the return value of this function is F, the last tx'd packet * has index N and the last ack'd packet has index M, the amount of * FC credit we have is C = F + M - N (i.e. we can send C more packets * before getting another ack). */ static size_t get_tx_flow_control_window(size_t frame_size, const bool dram_buff, const device_addr_t& tx_args) { double default_buff_size = dram_buff ? X300_TX_HW_BUFF_SIZE_DRAM : X300_TX_HW_BUFF_SIZE_SRAM; double hw_buff_size = tx_args.cast("send_buff_size", default_buff_size); size_t window_in_pkts = (static_cast(hw_buff_size) / frame_size); if (window_in_pkts == 0) { throw uhd::value_error("send_buff_size must be larger than the send_frame_size."); } return window_in_pkts; } static void handle_tx_async_msgs(boost::shared_ptr guts, zero_copy_if::sptr xport, bool big_endian, x300_clock_ctrl::sptr clock) { managed_recv_buffer::sptr buff = xport->get_recv_buff(); if (not buff) return; //extract packet info vrt::if_packet_info_t if_packet_info; if_packet_info.num_packet_words32 = buff->size()/sizeof(boost::uint32_t); const boost::uint32_t *packet_buff = buff->cast(); //unpacking can fail boost::uint32_t (*endian_conv)(boost::uint32_t) = uhd::ntohx; try { if (big_endian) { vrt::chdr::if_hdr_unpack_be(packet_buff, if_packet_info); endian_conv = uhd::ntohx; } else { vrt::chdr::if_hdr_unpack_le(packet_buff, if_packet_info); endian_conv = uhd::wtohx; } } catch(const std::exception &ex) { UHD_MSG(error) << "Error parsing async message packet: " << ex.what() << std::endl; return; } //fill in the async metadata async_metadata_t metadata; load_metadata_from_buff( endian_conv, metadata, if_packet_info, packet_buff, clock->get_master_clock_rate(), guts->stream_channel); //The FC response and the burst ack are two indicators that the radio //consumed packets. Use them to update the FC metadata if (metadata.event_code == X300_ASYNC_EVENT_CODE_FLOW_CTRL or metadata.event_code == async_metadata_t::EVENT_CODE_BURST_ACK ) { const size_t seq = metadata.user_payload[0]; guts->seq_queue.push_with_pop_on_full(seq); } //FC responses don't propagate up to the user so filter them here if (metadata.event_code != X300_ASYNC_EVENT_CODE_FLOW_CTRL) { guts->async_queue->push_with_pop_on_full(metadata); metadata.channel = guts->device_channel; guts->old_async_queue->push_with_pop_on_full(metadata); standard_async_msg_prints(metadata); } } static managed_send_buffer::sptr get_tx_buff_with_flowctrl( task::sptr /*holds ref*/, boost::shared_ptr guts, zero_copy_if::sptr xport, size_t fc_pkt_window, const double timeout ){ while (true) { // delta is the amount of FC credit we've used up const size_t delta = (guts->last_seq_out & 0xfff) - (guts->last_seq_ack & 0xfff); // If we want to send another packet, we must have FC credit left if ((delta & 0xfff) < fc_pkt_window) break; // If credit is all used up, we check seq_queue for more. const bool ok = guts->seq_queue.pop_with_timed_wait(guts->last_seq_ack, timeout); if (not ok) return managed_send_buffer::sptr(); //timeout waiting for flow control } managed_send_buffer::sptr buff = xport->get_send_buff(timeout); if (buff) { guts->last_seq_out++; //update seq, this will actually be a send } return buff; } /*********************************************************************** * Async Data **********************************************************************/ bool x300_impl::recv_async_msg( async_metadata_t &async_metadata, double timeout ){ return _async_md->pop_with_timed_wait(async_metadata, timeout); } /*********************************************************************** * Receive streamer **********************************************************************/ rx_streamer::sptr x300_impl::get_rx_stream(const uhd::stream_args_t &args_) { boost::mutex::scoped_lock lock(_transport_setup_mutex); stream_args_t args = args_; //setup defaults for unspecified values if (not args.otw_format.empty() and args.otw_format != "sc16") { throw uhd::value_error("x300_impl::get_rx_stream only supports otw_format sc16"); } args.otw_format = "sc16"; args.channels = args.channels.empty()? std::vector(1, 0) : args.channels; boost::shared_ptr my_streamer; for (size_t stream_i = 0; stream_i < args.channels.size(); stream_i++) { // Find the mainboard and subdev that corresponds to channel args.channels[stream_i] const size_t chan = args.channels[stream_i]; size_t mb_chan = chan, mb_index; for (mb_index = 0; mb_index < _mb.size(); mb_index++) { const subdev_spec_t &curr_subdev_spec = _tree->access("/mboards/" + boost::lexical_cast(mb_index) / "rx_subdev_spec").get(); if (mb_chan < curr_subdev_spec.size()) { break; } else { mb_chan -= curr_subdev_spec.size(); } } // Find the DSP that corresponds to this mainboard and subdev UHD_ASSERT_THROW(mb_index < _mb.size()); mboard_members_t &mb = _mb[mb_index]; const std::vector dsp_map = _tree->access >("/mboards/" + boost::lexical_cast(mb_index) / "rx_chan_dsp_mapping") .get(); //.at(mb_chan); UHD_ASSERT_THROW(mb_chan < dsp_map.size()); const size_t radio_index = dsp_map[mb_chan]; UHD_ASSERT_THROW(radio_index < 2); radio_perifs_t &perif = mb.radio_perifs[radio_index]; //setup the dsp transport hints (default to a large recv buff) device_addr_t device_addr = mb.recv_args; if (not device_addr.has_key("recv_buff_size")) { if (mb.xport_path != "nirio") { //For the ethernet transport, the buffer has to be set before creating //the transport because it is independent of the frame size and # frames //For nirio, the buffer size is not configurable by the user #if defined(UHD_PLATFORM_MACOS) || defined(UHD_PLATFORM_BSD) //limit buffer resize on macos or it will error device_addr["recv_buff_size"] = boost::lexical_cast(X300_RX_SW_BUFF_SIZE_ETH_MACOS); #elif defined(UHD_PLATFORM_LINUX) || defined(UHD_PLATFORM_WIN32) //set to half-a-second of buffering at max rate device_addr["recv_buff_size"] = boost::lexical_cast(X300_RX_SW_BUFF_SIZE_ETH); #endif } } //allocate sid and create transport boost::uint8_t dest = (radio_index == 0)? X300_XB_DST_R0 : X300_XB_DST_R1; boost::uint32_t data_sid; UHD_LOG << "creating rx stream " << device_addr.to_string() << std::endl; both_xports_t xport = this->make_transport(mb_index, dest, X300_RADIO_DEST_PREFIX_RX, device_addr, data_sid); UHD_LOG << boost::format("data_sid = 0x%08x, actual recv_buff_size = %d\n") % data_sid % xport.recv_buff_size << std::endl; // To calculate the max number of samples per packet, we assume the maximum header length // to avoid fragmentation should the entire header be used. const size_t bpp = xport.recv->get_recv_frame_size() - X300_RX_MAX_HDR_LEN; // bytes per packet const size_t bpi = convert::get_bytes_per_item(args.otw_format); // bytes per item const size_t spp = unsigned(args.args.cast("spp", bpp/bpi)); // samples per packet //make the new streamer given the samples per packet if (not my_streamer) my_streamer = boost::make_shared(spp); my_streamer->resize(args.channels.size()); //init some streamer stuff std::string conv_endianness; if (mb.if_pkt_is_big_endian) { my_streamer->set_vrt_unpacker(&vrt::chdr::if_hdr_unpack_be); conv_endianness = "be"; } else { my_streamer->set_vrt_unpacker(&vrt::chdr::if_hdr_unpack_le); conv_endianness = "le"; } //set the converter uhd::convert::id_type id; id.input_format = args.otw_format + "_item32_" + conv_endianness; id.num_inputs = 1; id.output_format = args.cpu_format; id.num_outputs = 1; my_streamer->set_converter(id); perif.framer->clear(); perif.framer->set_nsamps_per_packet(spp); //seems to be a good place to set this perif.framer->set_sid((data_sid << 16) | (data_sid >> 16)); perif.framer->setup(args); perif.ddc->setup(args); //flow control setup const size_t fc_window = get_rx_flow_control_window(xport.recv->get_recv_frame_size(), xport.recv_buff_size, device_addr); const size_t fc_handle_window = std::max(1, fc_window / X300_RX_FC_REQUEST_FREQ); UHD_LOG << "RX Flow Control Window = " << fc_window << ", RX Flow Control Handler Window = " << fc_handle_window << std::endl; perif.framer->configure_flow_control(fc_window); boost::shared_ptr seq32(new boost::uint32_t(0)); //Give the streamer a functor to get the recv_buffer //bind requires a zero_copy_if::sptr to add a streamer->xport lifetime dependency my_streamer->set_xport_chan_get_buff( stream_i, boost::bind(&zero_copy_if::get_recv_buff, xport.recv, _1), true /*flush*/ ); //Give the streamer a functor to handle overflows //bind requires a weak_ptr to break the a streamer->streamer circular dependency //Using "this" is OK because we know that x300_impl will outlive the streamer my_streamer->set_overflow_handler( stream_i, boost::bind(&x300_impl::handle_overflow, this, boost::ref(perif), boost::weak_ptr(my_streamer)) ); //Give the streamer a functor to send flow control messages //handle_rx_flowctrl is static and has no lifetime issues my_streamer->set_xport_handle_flowctrl( stream_i, boost::bind(&handle_rx_flowctrl, data_sid, xport.send, mb.if_pkt_is_big_endian, seq32, _1), fc_handle_window, true/*init*/ ); //Give the streamer a functor issue stream cmd //bind requires a rx_vita_core_3000::sptr to add a streamer->framer lifetime dependency my_streamer->set_issue_stream_cmd( stream_i, boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1) ); //Store a weak pointer to prevent a streamer->x300_impl->streamer circular dependency mb.rx_streamers[radio_index] = boost::weak_ptr(my_streamer); //sets all tick and samp rates on this streamer const fs_path mb_path = "/mboards/"+boost::lexical_cast(mb_index); _tree->access(mb_path / "tick_rate").update(); _tree->access(mb_path / "rx_dsps" / boost::lexical_cast(radio_index) / "rate" / "value").update(); } return my_streamer; } void x300_impl::handle_overflow(x300_impl::radio_perifs_t &perif, boost::weak_ptr streamer) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(streamer.lock()); if (not my_streamer) return; //If the rx_streamer has expired then overflow handling makes no sense. if (my_streamer->get_num_channels() == 1) { perif.framer->handle_overflow(); return; } ///////////////////////////////////////////////////////////// // MIMO overflow recovery time ///////////////////////////////////////////////////////////// //find out if we were in continuous mode before stopping const bool in_continuous_streaming_mode = perif.framer->in_continuous_streaming_mode(); //stop streaming my_streamer->issue_stream_cmd(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); //flush transports my_streamer->flush_all(0.001); //restart streaming if (in_continuous_streaming_mode) { stream_cmd_t stream_cmd(stream_cmd_t::STREAM_MODE_START_CONTINUOUS); stream_cmd.stream_now = false; stream_cmd.time_spec = perif.time64->get_time_now() + time_spec_t(0.01); my_streamer->issue_stream_cmd(stream_cmd); } } /*********************************************************************** * Transmit streamer **********************************************************************/ tx_streamer::sptr x300_impl::get_tx_stream(const uhd::stream_args_t &args_) { boost::mutex::scoped_lock lock(_transport_setup_mutex); stream_args_t args = args_; //setup defaults for unspecified values if (not args.otw_format.empty() and args.otw_format != "sc16") { throw uhd::value_error("x300_impl::get_tx_stream only supports otw_format sc16"); } args.otw_format = "sc16"; args.channels = args.channels.empty()? std::vector(1, 0) : args.channels; //shared async queue for all channels in streamer boost::shared_ptr async_md(new async_md_type(1000/*messages deep*/)); std::vector radios_list; boost::shared_ptr my_streamer; for (size_t stream_i = 0; stream_i < args.channels.size(); stream_i++) { // Find the mainboard and subdev that corresponds to channel args.channels[stream_i] const size_t chan = args.channels[stream_i]; size_t mb_chan = chan, mb_index; for (mb_index = 0; mb_index < _mb.size(); mb_index++) { const subdev_spec_t &curr_subdev_spec = _tree->access("/mboards/" + boost::lexical_cast(mb_index) / "tx_subdev_spec").get(); if (mb_chan < curr_subdev_spec.size()) { break; } else { mb_chan -= curr_subdev_spec.size(); } } // Find the DSP that corresponds to this mainboard and subdev mboard_members_t &mb = _mb[mb_index]; const size_t radio_index = _tree->access >("/mboards/" + boost::lexical_cast(mb_index) / "tx_chan_dsp_mapping") .get().at(mb_chan); radio_perifs_t &perif = mb.radio_perifs[radio_index]; radios_list.push_back(&perif); //setup the dsp transport hints (TODO) device_addr_t device_addr = mb.send_args; //allocate sid and create transport boost::uint8_t dest = (radio_index == 0)? X300_XB_DST_R0 : X300_XB_DST_R1; boost::uint32_t data_sid; UHD_LOG << "creating tx stream " << device_addr.to_string() << std::endl; both_xports_t xport = this->make_transport(mb_index, dest, X300_RADIO_DEST_PREFIX_TX, device_addr, data_sid); UHD_LOG << boost::format("data_sid = 0x%08x\n") % data_sid << std::endl; // To calculate the max number of samples per packet, we assume the maximum header length // to avoid fragmentation should the entire header be used. const size_t bpp = xport.send->get_send_frame_size() - X300_TX_MAX_HDR_LEN; const size_t bpi = convert::get_bytes_per_item(args.otw_format); const size_t spp = unsigned(args.args.cast("spp", bpp/bpi)); //make the new streamer given the samples per packet if (not my_streamer) my_streamer = boost::make_shared(spp); my_streamer->resize(args.channels.size()); std::string conv_endianness; if (mb.if_pkt_is_big_endian) { my_streamer->set_vrt_packer(&vrt::chdr::if_hdr_pack_be); conv_endianness = "be"; } else { my_streamer->set_vrt_packer(&vrt::chdr::if_hdr_pack_le); conv_endianness = "le"; } //set the converter uhd::convert::id_type id; id.input_format = args.cpu_format; id.num_inputs = 1; id.output_format = args.otw_format + "_item32_" + conv_endianness; id.num_outputs = 1; my_streamer->set_converter(id); perif.deframer->clear(); perif.deframer->setup(args); perif.duc->setup(args); //flow control setup size_t fc_window = get_tx_flow_control_window(xport.send->get_send_frame_size(), mb.has_dram_buff, device_addr); //In packets const size_t fc_handle_window = std::max(1, fc_window/ (mb.has_dram_buff ? X300_TX_FC_RESPONSE_FREQ_DRAM : X300_TX_FC_RESPONSE_FREQ_SRAM)); UHD_LOG << "TX Flow Control Window = " << fc_window << ", TX Flow Control Handler Window = " << fc_handle_window << std::endl; perif.deframer->configure_flow_control(0/*cycs off*/, fc_handle_window); boost::shared_ptr guts(new x300_tx_fc_guts_t()); guts->stream_channel = stream_i; guts->device_channel = chan; guts->async_queue = async_md; guts->old_async_queue = _async_md; task::sptr task = task::make(boost::bind(&handle_tx_async_msgs, guts, xport.recv, mb.if_pkt_is_big_endian, mb.clock)); //Give the streamer a functor to get the send buffer //get_tx_buff_with_flowctrl is static so bind has no lifetime issues //xport.send (sptr) is required to add streamer->data-transport lifetime dependency //task (sptr) is required to add a streamer->async-handler lifetime dependency my_streamer->set_xport_chan_get_buff( stream_i, boost::bind(&get_tx_buff_with_flowctrl, task, guts, xport.send, fc_window, _1) ); //Give the streamer a functor handled received async messages my_streamer->set_async_receiver( boost::bind(&async_md_type::pop_with_timed_wait, async_md, _1, _2) ); my_streamer->set_xport_chan_sid(stream_i, true, data_sid); my_streamer->set_enable_trailer(false); //TODO not implemented trailer support yet //Store a weak pointer to prevent a streamer->x300_impl->streamer circular dependency mb.tx_streamers[radio_index] = boost::weak_ptr(my_streamer); //sets all tick and samp rates on this streamer const fs_path mb_path = "/mboards/"+boost::lexical_cast(mb_index); _tree->access(mb_path / "tick_rate").update(); _tree->access(mb_path / "tx_dsps" / boost::lexical_cast(radio_index) / "rate" / "value").update(); } synchronize_dacs(radios_list); return my_streamer; }