// // Copyright 2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "x300_impl.hpp" #include #include "x300_regs.hpp" #include #include #include #include #include using namespace uhd; struct x300_uart_iface : uart_iface { x300_uart_iface(wb_iface::sptr iface): _iface(iface), rxoffset(0), txword32(0), _last_device_rxoffset(0) { txoffset = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_TX_INDEX)); rxpool = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_RX_ADDR)); txpool = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_TX_ADDR)); poolsize = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_WORDS32)); _rxcache.resize(poolsize); //this->write_uart("HELLO UART\n"); //this->read_uart(0.1); } void putchar(const char ch) { const int shift = ((txoffset%4) * 8); if (shift == 0) txword32 = 0; txword32 |= uint32_t(ch) << shift; // Write out full 32 bit words or whatever we have if end of string if (txoffset % 4 == 3 or ch == '\n') { _iface->poke32(SR_ADDR(txpool, txoffset/4), txword32); } txoffset = (txoffset + 1) % (poolsize*4); if (ch == '\n') { // Tell the X300 to write the string _iface->poke32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_TX_INDEX), txoffset); } } void write_uart(const std::string &buff) { boost::mutex::scoped_lock(_write_mutex); for(const char ch: buff) { this->putchar(ch); } } int getchar(void) { if (rxoffset == _last_device_rxoffset) return -1; int ret = static_cast(_rxcache[((rxoffset)/4) % poolsize] >> ((rxoffset%4)*8) & 0xFF); rxoffset++; return ret; } void update_cache(void) { uint32_t device_rxoffset = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_RX_INDEX)); uint32_t delta = device_rxoffset - rxoffset; while (delta) { if (delta >= poolsize*4) { // all the data is new - reload the entire cache for (uint32_t i = 0; i < poolsize; i++) { _rxcache[i] = _iface->peek32(SR_ADDR(rxpool, i)); } // set the head to the same character as the current device // offset (tail) one loop earlier rxoffset = device_rxoffset - (poolsize*4); // set the tail to the current device offset _last_device_rxoffset = device_rxoffset; // the string at the head is a partial, so skip it for (int c = getchar(); c != '\n' and c != -1; c = getchar()) {} // clear the partial string in the buffer, if any _rxbuff.clear(); } else if (rxoffset == _last_device_rxoffset) { // new data was added - refresh the portion of the cache that was updated for (uint32_t i = (_last_device_rxoffset/4) % poolsize; i != ((device_rxoffset/4)+1) % poolsize; i = (i+1) % poolsize) { _rxcache[i] = _iface->peek32(SR_ADDR(rxpool, i)); } // set the tail to the current device offset _last_device_rxoffset = device_rxoffset; } else { // there is new data, but we aren't done with what we have - check back later break; } // check again to see if anything changed while we were updating the cache device_rxoffset = _iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_UART_RX_INDEX)); delta = device_rxoffset - rxoffset; } } std::string read_uart(double timeout) { boost::mutex::scoped_lock(_read_mutex); const boost::system_time exit_time = boost::get_system_time() + boost::posix_time::microseconds(long(timeout*1e6)); std::string buff; while (true) { // Update cache this->update_cache(); // Get available characters for (int ch = this->getchar(); ch != -1; ch = this->getchar()) { // store character to buffer _rxbuff.append(1, ch); // newline found - return string if (ch == '\n') { buff.swap(_rxbuff); return buff; } } // no more characters - check time if (boost::get_system_time() > exit_time) break; } return buff; } wb_iface::sptr _iface; uint32_t rxoffset, txoffset, txword32, rxpool, txpool, poolsize; uint32_t _last_device_rxoffset; std::vector _rxcache; std::string _rxbuff; boost::mutex _read_mutex; boost::mutex _write_mutex; }; uart_iface::sptr x300_make_uart_iface(wb_iface::sptr iface) { return uart_iface::sptr(new x300_uart_iface(iface)); }