// // Copyright 2013 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "x300_impl.hpp" #include "x300_regs.hpp" #include #include #include #include #include "ad7922_regs.hpp" //aux adc #include "ad5623_regs.hpp" //aux dac using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; class x300_dboard_iface : public dboard_iface { public: x300_dboard_iface(const x300_dboard_iface_config_t &config); ~x300_dboard_iface(void); special_props_t get_special_props(void) { special_props_t props; props.soft_clock_divider = false; props.mangle_i2c_addrs = (_config.dboard_slot == 1); return props; } void write_aux_dac(unit_t, aux_dac_t, double); double read_aux_adc(unit_t, aux_adc_t); void _set_pin_ctrl(unit_t, boost::uint16_t); void _set_atr_reg(unit_t, atr_reg_t, boost::uint16_t); void _set_gpio_ddr(unit_t, boost::uint16_t); void _set_gpio_out(unit_t, boost::uint16_t); void set_gpio_debug(unit_t, int); boost::uint16_t read_gpio(unit_t); void write_i2c(boost::uint16_t, const byte_vector_t &); byte_vector_t read_i2c(boost::uint16_t, size_t); void set_clock_rate(unit_t, double); double get_clock_rate(unit_t); std::vector get_clock_rates(unit_t); void set_clock_enabled(unit_t, bool); double get_codec_rate(unit_t); void write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ); boost::uint32_t read_write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ); const x300_dboard_iface_config_t _config; uhd::dict _dac_regs; uhd::dict _clock_rates; void _write_aux_dac(unit_t); }; /*********************************************************************** * Make Function **********************************************************************/ dboard_iface::sptr x300_make_dboard_iface(const x300_dboard_iface_config_t &config) { return dboard_iface::sptr(new x300_dboard_iface(config)); } /*********************************************************************** * Structors **********************************************************************/ x300_dboard_iface::x300_dboard_iface(const x300_dboard_iface_config_t &config): _config(config) { //reset the aux dacs _dac_regs[UNIT_RX] = ad5623_regs_t(); _dac_regs[UNIT_TX] = ad5623_regs_t(); BOOST_FOREACH(unit_t unit, _dac_regs.keys()) { _dac_regs[unit].data = 1; _dac_regs[unit].addr = ad5623_regs_t::ADDR_ALL; _dac_regs[unit].cmd = ad5623_regs_t::CMD_RESET; this->_write_aux_dac(unit); } this->set_clock_enabled(UNIT_RX, false); this->set_clock_enabled(UNIT_TX, false); this->set_clock_rate(UNIT_RX, _config.clock->get_master_clock_rate()); this->set_clock_rate(UNIT_TX, _config.clock->get_master_clock_rate()); //some test code /* { this->write_aux_dac(UNIT_TX, AUX_DAC_A, .1); this->write_aux_dac(UNIT_TX, AUX_DAC_B, 1); this->write_aux_dac(UNIT_RX, AUX_DAC_A, 2); this->write_aux_dac(UNIT_RX, AUX_DAC_B, 3); while (1) { UHD_VAR(this->read_aux_adc(UNIT_TX, AUX_ADC_A)); UHD_VAR(this->read_aux_adc(UNIT_TX, AUX_ADC_B)); UHD_VAR(this->read_aux_adc(UNIT_RX, AUX_ADC_A)); UHD_VAR(this->read_aux_adc(UNIT_RX, AUX_ADC_B)); sleep(1); } } */ } x300_dboard_iface::~x300_dboard_iface(void) { UHD_SAFE_CALL ( this->set_clock_enabled(UNIT_RX, false); this->set_clock_enabled(UNIT_TX, false); ) } /*********************************************************************** * Clocks **********************************************************************/ void x300_dboard_iface::set_clock_rate(unit_t unit, double rate) { _clock_rates[unit] = rate; //set to shadow switch(unit) { case UNIT_RX: _config.clock->set_dboard_rate(_config.which_rx_clk, rate); return; case UNIT_TX: _config.clock->set_dboard_rate(_config.which_tx_clk, rate); return; } } double x300_dboard_iface::get_clock_rate(unit_t unit) { return _clock_rates[unit]; //get from shadow } std::vector x300_dboard_iface::get_clock_rates(unit_t unit) { switch(unit) { case UNIT_RX: return _config.clock->get_dboard_rates(_config.which_rx_clk); case UNIT_TX: return _config.clock->get_dboard_rates(_config.which_tx_clk); default: UHD_THROW_INVALID_CODE_PATH(); } } void x300_dboard_iface::set_clock_enabled(UHD_UNUSED(unit_t unit), UHD_UNUSED(bool enb)) { // TODO Variable DBoard clock control needs to be implemented for X300. } double x300_dboard_iface::get_codec_rate(unit_t) { return _config.clock->get_master_clock_rate(); } /*********************************************************************** * GPIO **********************************************************************/ void x300_dboard_iface::_set_pin_ctrl(unit_t unit, boost::uint16_t value) { return _config.gpio->set_pin_ctrl(unit, value); } void x300_dboard_iface::_set_gpio_ddr(unit_t unit, boost::uint16_t value) { return _config.gpio->set_gpio_ddr(unit, value); } void x300_dboard_iface::_set_gpio_out(unit_t unit, boost::uint16_t value) { return _config.gpio->set_gpio_out(unit, value); } boost::uint16_t x300_dboard_iface::read_gpio(unit_t unit) { return _config.gpio->read_gpio(unit); } void x300_dboard_iface::_set_atr_reg(unit_t unit, atr_reg_t atr, boost::uint16_t value) { return _config.gpio->set_atr_reg(unit, atr, value); } void x300_dboard_iface::set_gpio_debug(unit_t, int) { throw uhd::not_implemented_error("no set_gpio_debug implemented"); } /*********************************************************************** * SPI **********************************************************************/ #define toslaveno(unit) \ (((unit) == dboard_iface::UNIT_TX)? _config.tx_spi_slaveno : _config.rx_spi_slaveno) void x300_dboard_iface::write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ){ _config.spi->write_spi(toslaveno(unit), config, data, num_bits); } boost::uint32_t x300_dboard_iface::read_write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ){ return _config.spi->read_spi(toslaveno(unit), config, data, num_bits); } /*********************************************************************** * I2C **********************************************************************/ void x300_dboard_iface::write_i2c(boost::uint16_t addr, const byte_vector_t &bytes) { return _config.i2c->write_i2c(addr, bytes); } byte_vector_t x300_dboard_iface::read_i2c(boost::uint16_t addr, size_t num_bytes) { return _config.i2c->read_i2c(addr, num_bytes); } /*********************************************************************** * Aux DAX/ADC **********************************************************************/ void x300_dboard_iface::_write_aux_dac(unit_t unit) { static const uhd::dict unit_to_spi_dac = map_list_of (UNIT_RX, DB_RX_LSDAC_SEN) (UNIT_TX, DB_TX_LSDAC_SEN) ; _config.spi->write_spi( unit_to_spi_dac[unit], spi_config_t::EDGE_FALL, _dac_regs[unit].get_reg(), 24 ); } void x300_dboard_iface::write_aux_dac(unit_t unit, aux_dac_t which, double value) { _dac_regs[unit].data = boost::math::iround(4095*value/3.3); _dac_regs[unit].cmd = ad5623_regs_t::CMD_WR_UP_DAC_CHAN_N; typedef uhd::dict aux_dac_to_addr; static const uhd::dict unit_to_which_to_addr = map_list_of (UNIT_RX, map_list_of (AUX_DAC_A, ad5623_regs_t::ADDR_DAC_A) (AUX_DAC_B, ad5623_regs_t::ADDR_DAC_B) (AUX_DAC_C, ad5623_regs_t::ADDR_DAC_B) (AUX_DAC_D, ad5623_regs_t::ADDR_DAC_A) ) (UNIT_TX, map_list_of (AUX_DAC_A, ad5623_regs_t::ADDR_DAC_A) (AUX_DAC_B, ad5623_regs_t::ADDR_DAC_B) (AUX_DAC_C, ad5623_regs_t::ADDR_DAC_B) (AUX_DAC_D, ad5623_regs_t::ADDR_DAC_A) ) ; _dac_regs[unit].addr = unit_to_which_to_addr[unit][which]; this->_write_aux_dac(unit); } double x300_dboard_iface::read_aux_adc(unit_t unit, aux_adc_t which) { static const uhd::dict unit_to_spi_adc = map_list_of (UNIT_RX, DB_RX_LSADC_SEN) (UNIT_TX, DB_TX_LSADC_SEN) ; //setup spi config args spi_config_t config; config.mosi_edge = spi_config_t::EDGE_FALL; config.miso_edge = spi_config_t::EDGE_RISE; //setup the spi registers ad7922_regs_t ad7922_regs; switch(which){ case AUX_ADC_A: ad7922_regs.mod = 0; break; case AUX_ADC_B: ad7922_regs.mod = 1; break; } ad7922_regs.chn = ad7922_regs.mod; //normal mode: mod == chn //write and read spi _config.spi->write_spi( unit_to_spi_adc[unit], config, ad7922_regs.get_reg(), 16 ); ad7922_regs.set_reg(boost::uint16_t(_config.spi->read_spi( unit_to_spi_adc[unit], config, ad7922_regs.get_reg(), 16 ))); //convert to voltage and return return 3.3*ad7922_regs.result/4095; }