//
// Copyright 2015 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "x300_impl.hpp"
#include
/***********************************************************************
* DAC: Reset and synchronization operations
**********************************************************************/
void x300_impl::synchronize_dacs(const std::vector& radios)
{
if (radios.size() < 2) return; //Nothing to synchronize
//**PRECONDITION**
//This function assumes that all the VITA times in "radios" are synchronized
//to a common reference. Currently, this function is called in get_tx_stream
//which also has the same precondition.
//Reinitialize and resync all DACs
for (size_t i = 0; i < radios.size(); i++) {
radios[i]->dac->reset_and_resync();
}
//Get a rough estimate of the cumulative command latency
boost::posix_time::ptime t_start = boost::posix_time::microsec_clock::local_time();
for (size_t i = 0; i < radios.size(); i++) {
radios[i]->ctrl->peek64(RB64_TIME_NOW); //Discard value. We are just timing the call
}
boost::posix_time::time_duration t_elapsed =
boost::posix_time::microsec_clock::local_time() - t_start;
//Add 100% of headroom + uncertaintly to the command time
boost::uint64_t t_sync_us = (t_elapsed.total_microseconds() * 2) + 13000 /*Scheduler latency*/;
//Pick radios[0] as the time reference.
uhd::time_spec_t sync_time =
radios[0]->time64->get_time_now() + uhd::time_spec_t(((double)t_sync_us)/1e6);
//Send the sync command
for (size_t i = 0; i < radios.size(); i++) {
radios[i]->ctrl->set_time(sync_time);
radios[i]->ctrl->poke32(TOREG(SR_DACSYNC), 0x1); //Arm FRAMEP/N sync pulse
radios[i]->ctrl->set_time(uhd::time_spec_t(0.0)); //Clear command time
}
//Wait and check status
boost::this_thread::sleep(boost::posix_time::microseconds(t_sync_us));
for (size_t i = 0; i < radios.size(); i++) {
radios[i]->dac->verify_sync();
}
}
/***********************************************************************
* ADC: Self-test operations
**********************************************************************/
static void check_adc(uhd::wb_iface::sptr iface, const boost::uint32_t val, const boost::uint32_t i)
{
boost::uint32_t adc_rb = iface->peek32(RB32_RX);
adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA
if (val != adc_rb) {
throw uhd::runtime_error(
(boost::format("ADC self-test failed for Radio%d. (Exp=0x%x, Got=0x%x)")%i%val%adc_rb).str());
}
}
void x300_impl::self_test_adcs(mboard_members_t& mb, boost::uint32_t ramp_time_ms) {
for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
radio_perifs_t &perif = mb.radio_perifs[r];
//First test basic patterns
perif.adc->set_test_word("ones", "ones"); check_adc(perif.ctrl, 0xfffcfffc,r);
perif.adc->set_test_word("zeros", "zeros"); check_adc(perif.ctrl, 0x00000000,r);
perif.adc->set_test_word("ones", "zeros"); check_adc(perif.ctrl, 0xfffc0000,r);
perif.adc->set_test_word("zeros", "ones"); check_adc(perif.ctrl, 0x0000fffc,r);
for (size_t k = 0; k < 14; k++)
{
perif.adc->set_test_word("zeros", "custom", 1 << k);
check_adc(perif.ctrl, 1 << (k+2),r);
}
for (size_t k = 0; k < 14; k++)
{
perif.adc->set_test_word("custom", "zeros", 1 << k);
check_adc(perif.ctrl, 1 << (k+18),r);
}
//Turn on ramp pattern test
perif.adc->set_test_word("ramp", "ramp");
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1);
}
boost::this_thread::sleep(boost::posix_time::milliseconds(ramp_time_ms));
bool passed = true;
std::string status_str;
for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
radio_perifs_t &perif = mb.radio_perifs[r];
perif.misc_ins->refresh();
std::string i_status, q_status;
if (perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_I_LOCKED))
if (perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_I_ERROR))
i_status = "Bit Errors!";
else
i_status = "Good";
else
i_status = "Not Locked!";
if (perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_Q_LOCKED))
if (perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_Q_ERROR))
q_status = "Bit Errors!";
else
q_status = "Good";
else
q_status = "Not Locked!";
passed = passed && (i_status == "Good") && (q_status == "Good");
status_str += (boost::format(", ADC%d_I=%s, ADC%d_Q=%s")%r%i_status%r%q_status).str();
//Return to normal mode
perif.adc->set_test_word("normal", "normal");
}
if (not passed) {
throw uhd::runtime_error(
(boost::format("ADC self-test failed! Ramp checker status: {%s}")%status_str.substr(2)).str());
}
}
void x300_impl::extended_adc_test(mboard_members_t& mb, double duration_s)
{
static const size_t SECS_PER_ITER = 5;
UHD_MSG(status) << boost::format("Running Extended ADC Self-Test (Duration=%.0fs, %ds/iteration)...\n")
% duration_s % SECS_PER_ITER;
size_t num_iters = static_cast(ceil(duration_s/SECS_PER_ITER));
size_t num_failures = 0;
for (size_t iter = 0; iter < num_iters; iter++) {
//Print date and time
boost::posix_time::time_facet *facet = new boost::posix_time::time_facet("%d-%b-%Y %H:%M:%S");
std::ostringstream time_strm;
time_strm.imbue(std::locale(std::locale::classic(), facet));
time_strm << boost::posix_time::second_clock::local_time();
//Run self-test
UHD_MSG(status) << boost::format("-- [%s] Iteration %06d... ") % time_strm.str() % (iter+1);
try {
self_test_adcs(mb, SECS_PER_ITER*1000);
UHD_MSG(status) << "passed" << std::endl;
} catch(std::exception &e) {
num_failures++;
UHD_MSG(status) << e.what() << std::endl;
}
}
if (num_failures == 0) {
UHD_MSG(status) << "Extended ADC Self-Test PASSED\n";
} else {
throw uhd::runtime_error(
(boost::format("Extended ADC Self-Test FAILED!!! (%d/%d failures)\n") % num_failures % num_iters).str());
}
}
/***********************************************************************
* ADC: Self-calibration operations
**********************************************************************/
void x300_impl::self_cal_adc_capture_delay(mboard_members_t& mb, const size_t radio_i, bool print_status)
{
radio_perifs_t& perif = mb.radio_perifs[radio_i];
if (print_status) UHD_MSG(status) << "Running ADC capture delay self-cal..." << std::flush;
static const boost::uint32_t NUM_DELAY_STEPS = 32; //The IDELAYE2 element has 32 steps
static const boost::uint32_t NUM_RETRIES = 2; //Retry self-cal if it fails in warmup situations
static const boost::int32_t MIN_WINDOW_LEN = 4;
boost::int32_t win_start = -1, win_stop = -1;
boost::uint32_t iter = 0;
while (iter++ < NUM_RETRIES) {
for (boost::uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) {
//Apply delay
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_VAL, dly_tap);
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 1);
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 0);
boost::uint32_t err_code = 0;
// -- Test I Channel --
//Put ADC in ramp test mode. Tie the other channel to all ones.
perif.adc->set_test_word("ramp", "ones");
//Turn on the pattern checker in the FPGA. It will lock when it sees a zero
//and count deviations from the expected value
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1);
//10ms @ 200MHz = 2 million samples
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
if (perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER0_I_LOCKED)) {
err_code += perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER0_I_ERROR);
} else {
err_code += 100; //Increment error code by 100 to indicate no lock
}
// -- Test Q Channel --
//Put ADC in ramp test mode. Tie the other channel to all ones.
perif.adc->set_test_word("ones", "ramp");
//Turn on the pattern checker in the FPGA. It will lock when it sees a zero
//and count deviations from the expected value
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1);
//10ms @ 200MHz = 2 million samples
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
if (perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER0_Q_LOCKED)) {
err_code += perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER0_Q_ERROR);
} else {
err_code += 100; //Increment error code by 100 to indicate no lock
}
if (err_code == 0) {
if (win_start == -1) { //This is the first window
win_start = dly_tap;
win_stop = dly_tap;
} else { //We are extending the window
win_stop = dly_tap;
}
} else {
if (win_start != -1) { //A valid window turned invalid
if (win_stop - win_start >= MIN_WINDOW_LEN) {
break; //Valid window found
} else {
win_start = -1; //Reset window
}
}
}
//UHD_MSG(status) << (boost::format("CapTap=%d, Error=%d\n") % dly_tap % err_code);
}
//Retry the self-cal if it fails
if ((win_start == -1 || (win_stop - win_start) < MIN_WINDOW_LEN) && iter < NUM_RETRIES /*not last iteration*/) {
win_start = -1;
win_stop = -1;
boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
} else {
break;
}
}
perif.adc->set_test_word("normal", "normal");
perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
if (win_start == -1) {
throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Convergence error.");
}
if (win_stop-win_start < MIN_WINDOW_LEN) {
throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Valid window too narrow.");
}
boost::uint32_t ideal_tap = (win_stop + win_start) / 2;
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_VAL, ideal_tap);
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 1);
perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 0);
if (print_status) {
double tap_delay = (1.0e12 / mb.clock->get_master_clock_rate()) / (2*32); //in ps
UHD_MSG(status) << boost::format(" done (Tap=%d, Window=%d, TapDelay=%.3fps, Iter=%d)\n") % ideal_tap % (win_stop-win_start) % tap_delay % iter;
}
}
double x300_impl::self_cal_adc_xfer_delay(mboard_members_t& mb, bool apply_delay)
{
UHD_MSG(status) << "Running ADC transfer delay self-cal: " << std::flush;
//Effective resolution of the self-cal.
static const size_t NUM_DELAY_STEPS = 100;
double master_clk_period = (1.0e9 / mb.clock->get_master_clock_rate()); //in ns
double delay_start = 0.0;
double delay_range = 2 * master_clk_period;
double delay_incr = delay_range / NUM_DELAY_STEPS;
UHD_MSG(status) << "Measuring..." << std::flush;
double cached_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_ADC0);
double fpga_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_FPGA);
//Iterate through several values of delays and measure ADC data integrity
std::vector< std::pair > results;
for (size_t i = 0; i < NUM_DELAY_STEPS; i++) {
//Delay the ADC clock (will set both Ch0 and Ch1 delays)
double delay = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, delay_incr*i + delay_start);
wait_for_clk_locked(mb.zpu_ctrl, ZPU_RB_CLK_STATUS_LMK_LOCK, 0.1);
boost::uint32_t err_code = 0;
for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
//Test each channel (I and Q) individually so as to not accidentally trigger
//on the data from the other channel if there is a swap
// -- Test I Channel --
//Put ADC in ramp test mode. Tie the other channel to all ones.
mb.radio_perifs[r].adc->set_test_word("ramp", "ones");
//Turn on the pattern checker in the FPGA. It will lock when it sees a zero
//and count deviations from the expected value
mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1);
//50ms @ 200MHz = 10 million samples
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
if (mb.radio_perifs[r].misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_I_LOCKED)) {
err_code += mb.radio_perifs[r].misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_I_ERROR);
} else {
err_code += 100; //Increment error code by 100 to indicate no lock
}
// -- Test Q Channel --
//Put ADC in ramp test mode. Tie the other channel to all ones.
mb.radio_perifs[r].adc->set_test_word("ones", "ramp");
//Turn on the pattern checker in the FPGA. It will lock when it sees a zero
//and count deviations from the expected value
mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1);
//50ms @ 200MHz = 10 million samples
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
if (mb.radio_perifs[r].misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_Q_LOCKED)) {
err_code += mb.radio_perifs[r].misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_Q_ERROR);
} else {
err_code += 100; //Increment error code by 100 to indicate no lock
}
}
//UHD_MSG(status) << (boost::format("XferDelay=%fns, Error=%d\n") % delay % err_code);
results.push_back(std::pair(delay, err_code==0));
}
//Calculate the valid window
int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1;
for (size_t i = 0; i < results.size(); i++) {
std::pair& item = results[i];
if (item.second) { //If data is stable
if (cur_start_idx == -1) { //This is the first window
cur_start_idx = i;
cur_stop_idx = i;
} else { //We are extending the window
cur_stop_idx = i;
}
} else {
if (cur_start_idx == -1) { //We haven't yet seen valid data
//Do nothing
} else if (win_start_idx == -1) { //We passed the first valid window
win_start_idx = cur_start_idx;
win_stop_idx = cur_stop_idx;
} else { //Update cached window if current window is larger
double cur_win_len = results[cur_stop_idx].first - results[cur_start_idx].first;
double cached_win_len = results[win_stop_idx].first - results[win_start_idx].first;
if (cur_win_len > cached_win_len) {
win_start_idx = cur_start_idx;
win_stop_idx = cur_stop_idx;
}
}
//Reset current window
cur_start_idx = -1;
cur_stop_idx = -1;
}
}
if (win_start_idx == -1) {
throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Convergence error.");
}
double win_center = (results[win_stop_idx].first + results[win_start_idx].first) / 2.0;
double win_length = results[win_stop_idx].first - results[win_start_idx].first;
if (win_length < master_clk_period/4) {
throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Valid window too narrow.");
}
//Cycle slip the relative delay by a clock cycle to prevent sample misalignment
//fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need
bool cycle_slip = (win_center-fpga_clk_delay >= master_clk_period);
if (cycle_slip) {
win_center -= master_clk_period;
}
if (apply_delay) {
UHD_MSG(status) << "Validating..." << std::flush;
//Apply delay
win_center = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, win_center); //Sets ADC0 and ADC1
wait_for_clk_locked(mb.zpu_ctrl, ZPU_RB_CLK_STATUS_LMK_LOCK, 0.1);
//Validate
self_test_adcs(mb, 2000);
} else {
//Restore delay
mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, cached_clk_delay); //Sets ADC0 and ADC1
}
//Teardown
for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
mb.radio_perifs[r].adc->set_test_word("normal", "normal");
mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0);
}
UHD_MSG(status) << (boost::format(" done (FPGA->ADC=%.3fns%s, Window=%.3fns)\n") %
(win_center-fpga_clk_delay) % (cycle_slip?" +cyc":"") % win_length);
return win_center;
}