//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "clock_ctrl.hpp"
#include "ad9522_regs.hpp"
#include
#include
#include "usrp_e_regs.hpp" //spi slave constants
#include
#include
#include
#include
using namespace uhd;
template static void set_clock_divider(
size_t divider, div_type &low, div_type &high, bypass_type &bypass
){
high = divider/2 - 1;
low = divider - high - 2;
bypass = (divider == 1)? 1 : 0;
}
/***********************************************************************
* Constants
**********************************************************************/
static const double ref_clock_rate = 10e6;
static const size_t r_counter = 1;
static const size_t a_counter = 0;
static const size_t b_counter = 20;
static const size_t prescaler = 8; //set below with enum, set to 8 when input is under 2400 MHz
static const size_t vco_divider = 1; //set below with enum
static const size_t n_counter = prescaler * b_counter + a_counter;
static const size_t vco_clock_rate = ref_clock_rate/r_counter * n_counter; //between 1400 and 1800 MHz
static const double master_clock_rate = vco_clock_rate/vco_divider;
static const size_t fpga_clock_divider = size_t(master_clock_rate/64e6);
static const size_t codec_clock_divider = size_t(master_clock_rate/64e6);
/***********************************************************************
* Clock Control Implementation
**********************************************************************/
class usrp_e_clock_ctrl_impl : public usrp_e_clock_ctrl{
public:
usrp_e_clock_ctrl_impl(usrp_e_iface::sptr iface){
_iface = iface;
//init the clock gen registers
//Note: out0 should already be clocking the FPGA or this isnt going to work
_ad9522_regs.sdo_active = ad9522_regs_t::SDO_ACTIVE_SDO_SDIO;
_ad9522_regs.enb_stat_eeprom_at_stat_pin = 0; //use status pin
_ad9522_regs.status_pin_control = 0x1; //n divider
_ad9522_regs.ld_pin_control = 0x00; //dld
_ad9522_regs.refmon_pin_control = 0x12; //show ref2
_ad9522_regs.enable_ref2 = 1;
_ad9522_regs.enable_ref1 = 0;
_ad9522_regs.select_ref = ad9522_regs_t::SELECT_REF_REF2;
_ad9522_regs.set_r_counter(r_counter);
_ad9522_regs.a_counter = a_counter;
_ad9522_regs.set_b_counter(b_counter);
_ad9522_regs.prescaler_p = ad9522_regs_t::PRESCALER_P_DIV8_9;
_ad9522_regs.pll_power_down = ad9522_regs_t::PLL_POWER_DOWN_NORMAL;
_ad9522_regs.cp_current = ad9522_regs_t::CP_CURRENT_3_0MA;
_ad9522_regs.vco_calibration_now = 1; //calibrate it!
_ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV1;
_ad9522_regs.select_vco_or_clock = ad9522_regs_t::SELECT_VCO_OR_CLOCK_VCO;
//setup fpga master clock
_ad9522_regs.out0_format = ad9522_regs_t::OUT0_FORMAT_LVDS;
set_clock_divider(fpga_clock_divider,
_ad9522_regs.divider0_low_cycles,
_ad9522_regs.divider0_high_cycles,
_ad9522_regs.divider0_bypass
);
//setup codec clock
_ad9522_regs.out3_format = ad9522_regs_t::OUT3_FORMAT_LVDS;
set_clock_divider(codec_clock_divider,
_ad9522_regs.divider1_low_cycles,
_ad9522_regs.divider1_high_cycles,
_ad9522_regs.divider1_bypass
);
//setup test clock (same divider as codec clock)
_ad9522_regs.out4_format = ad9522_regs_t::OUT4_FORMAT_CMOS;
_ad9522_regs.out4_cmos_configuration = (true)?
ad9522_regs_t::OUT4_CMOS_CONFIGURATION_A_ON :
ad9522_regs_t::OUT4_CMOS_CONFIGURATION_OFF;
//setup a list of register ranges to write
typedef std::pair range_t;
static const std::vector ranges = boost::assign::list_of
(range_t(0x000, 0x000)) (range_t(0x010, 0x01F))
(range_t(0x0F0, 0x0FD)) (range_t(0x190, 0x19B))
(range_t(0x1E0, 0x1E1)) (range_t(0x230, 0x230))
;
//write initial register values and latch/update
BOOST_FOREACH(const range_t &range, ranges){
for(boost::uint16_t addr = range.first; addr <= range.second; addr++){
this->send_reg(addr);
}
}
this->latch_regs();
//test read:
//boost::uint32_t reg = _ad9522_regs.get_read_reg(0x01b);
//boost::uint32_t result = _iface->transact_spi(
// UE_SPI_SS_AD9522,
// spi_config_t::EDGE_RISE,
// reg, 24, true /*no*/
//);
//std::cout << "result " << std::hex << result << std::endl;
this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
}
~usrp_e_clock_ctrl_impl(void){
this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
}
double get_fpga_clock_rate(void){
return master_clock_rate/fpga_clock_divider;
}
/***********************************************************************
* RX Dboard Clock Control (output 9, divider 3)
**********************************************************************/
void enable_rx_dboard_clock(bool enb){
_ad9522_regs.out9_format = ad9522_regs_t::OUT9_FORMAT_CMOS;
_ad9522_regs.out9_cmos_configuration = (enb)?
ad9522_regs_t::OUT9_CMOS_CONFIGURATION_B_ON :
ad9522_regs_t::OUT9_CMOS_CONFIGURATION_OFF;
this->send_reg(0x0F9);
this->latch_regs();
}
std::vector get_rx_dboard_clock_rates(void){
std::vector rates;
for(size_t div = 1; div <= 16+16; div++) rates.push_back(master_clock_rate/div);
return rates;
}
void set_rx_dboard_clock_rate(double rate){
assert_has(get_rx_dboard_clock_rates(), rate, "rx dboard clock rate");
size_t divider = size_t(master_clock_rate/rate);
//set the divider registers
set_clock_divider(divider,
_ad9522_regs.divider3_low_cycles,
_ad9522_regs.divider3_high_cycles,
_ad9522_regs.divider3_bypass
);
this->send_reg(0x199);
this->send_reg(0x19a);
this->latch_regs();
}
/***********************************************************************
* TX Dboard Clock Control (output 6, divider 2)
**********************************************************************/
void enable_tx_dboard_clock(bool enb){
_ad9522_regs.out6_format = ad9522_regs_t::OUT6_FORMAT_CMOS;
_ad9522_regs.out6_cmos_configuration = (enb)?
ad9522_regs_t::OUT6_CMOS_CONFIGURATION_B_ON :
ad9522_regs_t::OUT6_CMOS_CONFIGURATION_OFF;
this->send_reg(0x0F6);
this->latch_regs();
}
std::vector get_tx_dboard_clock_rates(void){
return get_rx_dboard_clock_rates(); //same master clock, same dividers...
}
void set_tx_dboard_clock_rate(double rate){
assert_has(get_tx_dboard_clock_rates(), rate, "tx dboard clock rate");
size_t divider = size_t(master_clock_rate/rate);
//set the divider registers
set_clock_divider(divider,
_ad9522_regs.divider2_low_cycles,
_ad9522_regs.divider2_high_cycles,
_ad9522_regs.divider2_bypass
);
this->send_reg(0x196);
this->send_reg(0x197);
this->latch_regs();
}
private:
usrp_e_iface::sptr _iface;
ad9522_regs_t _ad9522_regs;
void latch_regs(void){
_ad9522_regs.io_update = 1;
this->send_reg(0x232);
}
void send_reg(boost::uint16_t addr){
boost::uint32_t reg = _ad9522_regs.get_write_reg(addr);
//std::cout << "clock control write reg: " << std::hex << reg << std::endl;
_iface->transact_spi(
UE_SPI_SS_AD9522,
spi_config_t::EDGE_RISE,
reg, 24, false /*no rb*/
);
}
};
/***********************************************************************
* Clock Control Make
**********************************************************************/
usrp_e_clock_ctrl::sptr usrp_e_clock_ctrl::make(usrp_e_iface::sptr iface){
return sptr(new usrp_e_clock_ctrl_impl(iface));
}