// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #ifndef INCLUDED_USRP2_REGS_HPP #define INCLUDED_USRP2_REGS_HPP //////////////////////////////////////////////////// // Settings Bus, Slave #7, Not Byte Addressable! // // Output-only from processor point-of-view. // 1KB of address space (== 256 32-bit write-only regs) #define MISC_OUTPUT_BASE 0xD400 //#define TX_PROTOCOL_ENGINE_BASE 0xD480 //#define RX_PROTOCOL_ENGINE_BASE 0xD4C0 //#define BUFFER_POOL_CTRL_BASE 0xD500 //#define LAST_SETTING_REG 0xD7FC // last valid setting register #define SR_MISC 0 #define SR_TX_PROT_ENG 32 #define SR_RX_PROT_ENG 48 #define SR_BUFFER_POOL_CTRL 64 #define SR_UDP_SM 96 #define SR_TX_DSP 208 #define SR_TX_CTRL 224 #define SR_RX_DSP 160 #define SR_RX_CTRL 176 #define SR_TIME64 192 #define SR_SIMTIMER 198 #define SR_LAST 255 #define _SR_ADDR(sr) ((MISC_OUTPUT_BASE) + (4*(sr))) ///////////////////////////////////////////////// // SPI Slave Constants //////////////////////////////////////////////// // Masks for controlling different peripherals #define SPI_SS_AD9510 1 #define SPI_SS_AD9777 2 #define SPI_SS_RX_DAC 4 #define SPI_SS_RX_ADC 8 #define SPI_SS_RX_DB 16 #define SPI_SS_TX_DAC 32 #define SPI_SS_TX_ADC 64 #define SPI_SS_TX_DB 128 ///////////////////////////////////////////////// // Misc Control //////////////////////////////////////////////// #define U2_REG_MISC_CTRL_CLOCK _SR_ADDR(0) #define U2_REG_MISC_CTRL_SERDES _SR_ADDR(1) #define U2_REG_MISC_CTRL_ADC _SR_ADDR(2) #define U2_REG_MISC_CTRL_LEDS _SR_ADDR(3) #define U2_REG_MISC_CTRL_PHY _SR_ADDR(4) // LSB is reset line to eth phy #define U2_REG_MISC_CTRL_DBG_MUX _SR_ADDR(5) #define U2_REG_MISC_CTRL_RAM_PAGE _SR_ADDR(6) // FIXME should go somewhere else... #define U2_REG_MISC_CTRL_FLUSH_ICACHE _SR_ADDR(7) // Flush the icache #define U2_REG_MISC_CTRL_LED_SRC _SR_ADDR(8) // HW or SW control for LEDs #define U2_FLAG_MISC_CTRL_SERDES_ENABLE 8 #define U2_FLAG_MISC_CTRL_SERDES_PRBSEN 4 #define U2_FLAG_MISC_CTRL_SERDES_LOOPEN 2 #define U2_FLAG_MISC_CTRL_SERDES_RXEN 1 #define U2_FLAG_MISC_CTRL_ADC_ON 0x0F #define U2_FLAG_MISC_CTRL_ADC_OFF 0x00 ///////////////////////////////////////////////// // VITA49 64 bit time (write only) //////////////////////////////////////////////// /*! * \brief Time 64 flags * *
   *
   *    3                   2                   1                       
   *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   * +-----------------------------------------------------------+-+-+
   * |                                                           |S|P|
   * +-----------------------------------------------------------+-+-+
   *
   * P - PPS edge selection (0=negedge, 1=posedge, default=0)
   * S - Source (0=sma, 1=mimo, 0=default)
   *
   * 
*/ #define U2_REG_TIME64_SECS _SR_ADDR(SR_TIME64 + 0) // value to set absolute secs to on next PPS #define U2_REG_TIME64_TICKS _SR_ADDR(SR_TIME64 + 1) // value to set absolute ticks to on next PPS #define U2_REG_TIME64_FLAGS _SR_ADDR(SR_TIME64 + 2) // flags - see chart above #define U2_REG_TIME64_IMM _SR_ADDR(SR_TIME64 + 3) // set immediate (0=latch on next pps, 1=latch immediate, default=0) #define U2_REG_TIME64_TPS _SR_ADDR(SR_TIME64 + 4) // the ticks per second rollover count #define U2_REG_TIME64_SECS_RB (0xCC00 + 4*10) #define U2_REG_TIME64_TICKS_RB (0xCC00 + 4*11) //pps flags (see above) #define U2_FLAG_TIME64_PPS_NEGEDGE (0 << 0) #define U2_FLAG_TIME64_PPS_POSEDGE (1 << 0) #define U2_FLAG_TIME64_PPS_SMA (0 << 1) #define U2_FLAG_TIME64_PPS_MIMO (1 << 1) #define U2_FLAG_TIME64_LATCH_NOW 1 #define U2_FLAG_TIME64_LATCH_NEXT_PPS 0 ///////////////////////////////////////////////// // DSP TX Regs //////////////////////////////////////////////// #define U2_REG_DSP_TX_FREQ _SR_ADDR(SR_TX_DSP + 0) #define U2_REG_DSP_TX_SCALE_IQ _SR_ADDR(SR_TX_DSP + 1) // {scale_i,scale_q} #define U2_REG_DSP_TX_INTERP_RATE _SR_ADDR(SR_TX_DSP + 2) /*! * \brief output mux configuration. * *
   *     3                   2                   1                       
   *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   *  +-------------------------------+-------+-------+-------+-------+
   *  |                                               | DAC1  |  DAC0 |
   *  +-------------------------------+-------+-------+-------+-------+
   * 
   *  There are N DUCs (1 now) with complex inputs and outputs.
   *  There are two DACs.
   * 
   *  Each 4-bit DACx field specifies the source for the DAC
   *  Each subfield is coded like this: 
   * 
   *     3 2 1 0
   *    +-------+
   *    |   N   |
   *    +-------+
   * 
   *  N specifies which DUC output is connected to this DAC.
   * 
   *   N   which interp output
   *  ---  -------------------
   *   0   DUC 0 I
   *   1   DUC 0 Q
   *   2   DUC 1 I
   *   3   DUC 1 Q
   *   F   All Zeros
   *   
   * The default value is 0x10
   * 
*/ #define U2_REG_DSP_TX_MUX _SR_ADDR(SR_TX_DSP + 4) ///////////////////////////////////////////////// // DSP RX Regs //////////////////////////////////////////////// #define U2_REG_DSP_RX_FREQ _SR_ADDR(SR_RX_DSP + 0) #define U2_REG_DSP_RX_SCALE_IQ _SR_ADDR(SR_RX_DSP + 1) // {scale_i,scale_q} #define U2_REG_DSP_RX_DECIM_RATE _SR_ADDR(SR_RX_DSP + 2) #define U2_REG_DSP_RX_DCOFFSET_I _SR_ADDR(SR_RX_DSP + 3) // Bit 31 high sets fixed offset mode, using lower 14 bits, // otherwise it is automatic #define U2_REG_DSP_RX_DCOFFSET_Q _SR_ADDR(SR_RX_DSP + 4) // Bit 31 high sets fixed offset mode, using lower 14 bits /*! * \brief input mux configuration. * * This determines which ADC (or constant zero) is connected to * each DDC input. There are N DDCs (1 now). Each has two inputs. * *
   * Mux value:
   *
   *    3                   2                   1                       
   *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   * +-------+-------+-------+-------+-------+-------+-------+-------+
   * |                                                       |Q0 |I0 |
   * +-------+-------+-------+-------+-------+-------+-------+-------+
   *
   * Each 2-bit I field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
   * Each 2-bit Q field is either 00 (A/D A), 01 (A/D B) or 1X (const zero)
   *
   * The default value is 0x4
   * 
*/ #define U2_REG_DSP_RX_MUX _SR_ADDR(SR_RX_DSP + 5) // called adc_mux in dsp_core_rx.v //////////////////////////////////////////////// // GPIO, Slave 4 //////////////////////////////////////////////// // // These go to the daughterboard i/o pins // #define U2_REG_GPIO_BASE 0xC800 #define U2_REG_GPIO_IO U2_REG_GPIO_BASE + 0 // 32 bits, gpio io pins (tx high 16 bits, rx low 16 bits) #define U2_REG_GPIO_DDR U2_REG_GPIO_BASE + 4 // 32 bits, gpio ddr, 1 means output (tx high 16 bits, rx low 16 bits) #define U2_REG_GPIO_TX_SEL U2_REG_GPIO_BASE + 8 // 16 2-bit fields select which source goes to TX DB #define U2_REG_GPIO_RX_SEL U2_REG_GPIO_BASE + 12 // 16 2-bit fields select which source goes to RX DB // each 2-bit sel field is layed out this way #define U2_FLAG_GPIO_SEL_GPIO 0 // if pin is an output, set by GPIO register #define U2_FLAG_GPIO_SEL_ATR 1 // if pin is an output, set by ATR logic #define U2_FLAG_GPIO_SEL_DEBUG_0 2 // if pin is an output, debug lines from FPGA fabric #define U2_FLAG_GPIO_SEL_DEBUG_1 3 // if pin is an output, debug lines from FPGA fabric /////////////////////////////////////////////////// // ATR Controller, Slave 11 //////////////////////////////////////////////// #define U2_REG_ATR_BASE 0xE400 #define U2_REG_ATR_IDLE_TXSIDE U2_REG_ATR_BASE + 0 #define U2_REG_ATR_IDLE_RXSIDE U2_REG_ATR_BASE + 2 #define U2_REG_ATR_INTX_TXSIDE U2_REG_ATR_BASE + 4 #define U2_REG_ATR_INTX_RXSIDE U2_REG_ATR_BASE + 6 #define U2_REG_ATR_INRX_TXSIDE U2_REG_ATR_BASE + 8 #define U2_REG_ATR_INRX_RXSIDE U2_REG_ATR_BASE + 10 #define U2_REG_ATR_FULL_TXSIDE U2_REG_ATR_BASE + 12 #define U2_REG_ATR_FULL_RXSIDE U2_REG_ATR_BASE + 14 /////////////////////////////////////////////////// // VITA RX CTRL regs /////////////////////////////////////////////////// // The following 3 are logically a single command register. // They are clocked into the underlying fifo when time_ticks is written. #define U2_REG_RX_CTRL_STREAM_CMD _SR_ADDR(SR_RX_CTRL + 0) // {now, chain, num_samples(30) #define U2_REG_RX_CTRL_TIME_SECS _SR_ADDR(SR_RX_CTRL + 1) #define U2_REG_RX_CTRL_TIME_TICKS _SR_ADDR(SR_RX_CTRL + 2) #define U2_REG_RX_CTRL_CLEAR_OVERRUN _SR_ADDR(SR_RX_CTRL + 3) // write anything to clear overrun #define U2_REG_RX_CTRL_VRT_HEADER _SR_ADDR(SR_RX_CTRL + 4) // word 0 of packet. FPGA fills in packet counter #define U2_REG_RX_CTRL_VRT_STREAM_ID _SR_ADDR(SR_RX_CTRL + 5) // word 1 of packet. #define U2_REG_RX_CTRL_VRT_TRAILER _SR_ADDR(SR_RX_CTRL + 6) #define U2_REG_RX_CTRL_NSAMPS_PER_PKT _SR_ADDR(SR_RX_CTRL + 7) #define U2_REG_RX_CTRL_NCHANNELS _SR_ADDR(SR_RX_CTRL + 8) // 1 in basic case, up to 4 for vector sources #endif /* INCLUDED_USRP2_REGS_HPP */