// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp2_impl.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include //htonl and ntohl #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; namespace asio = boost::asio; /*********************************************************************** * Helper Functions **********************************************************************/ template std::string num2str(T num){ return boost::lexical_cast(num); } //! separate indexed device addresses into a vector of device addresses device_addrs_t sep_indexed_dev_addrs(const device_addr_t &dev_addr){ //------------ support old deprecated way and print warning -------- if (dev_addr.has_key("addr")){ std::vector addrs = std::split_string(dev_addr["addr"]); if (addrs.size() > 1){ device_addr_t fixed_dev_addr = dev_addr; fixed_dev_addr.pop("addr"); for (size_t i = 0; i < addrs.size(); i++){ fixed_dev_addr[str(boost::format("addr%d") % i)] = addrs[i]; } uhd::warning::post( "addr = is deprecated.\n" "To address a multi-device, use multiple = .\n" "See the USRP-NXXX application notes. Two device example:\n" " addr0 = 192.168.10.2\n" " addr1 = 192.168.10.3\n" ); return sep_indexed_dev_addrs(fixed_dev_addr); } } //------------------------------------------------------------------ device_addrs_t dev_addrs; BOOST_FOREACH(const std::string &key, dev_addr.keys()){ boost::cmatch matches; if (not boost::regex_match(key.c_str(), matches, boost::regex("^(\\D+)(\\d*)$"))){ throw std::runtime_error("unknown key format: " + key); } std::string key_part(matches[1].first, matches[1].second); std::string num_part(matches[2].first, matches[2].second); size_t num = (num_part.empty())? 0 : boost::lexical_cast(num_part); dev_addrs.resize(std::max(num+1, dev_addrs.size())); dev_addrs[num][key_part] = dev_addr[key]; } return dev_addrs; } //! combine a vector in device addresses into an indexed device address device_addr_t combine_dev_addr_vector(const device_addrs_t &dev_addrs){ device_addr_t dev_addr; for (size_t i = 0; i < dev_addrs.size(); i++){ BOOST_FOREACH(const std::string &key, dev_addrs[i].keys()){ dev_addr[str(boost::format("%s%d") % key % i)] = dev_addrs[i][key]; } } return dev_addr; } /*********************************************************************** * Discovery over the udp transport **********************************************************************/ static device_addrs_t usrp2_find(const device_addr_t &hint_){ //handle the multi-device discovery device_addrs_t hints = sep_indexed_dev_addrs(hint_); if (hints.size() > 1){ device_addrs_t found_devices; BOOST_FOREACH(const device_addr_t &hint_i, hints){ device_addrs_t found_devices_i = usrp2_find(hint_i); if (found_devices_i.size() != 1) throw std::runtime_error(str(boost::format( "Could not resolve device hint \"%s\" to a single device." ) % hint_i.to_string())); found_devices.push_back(found_devices_i[0]); } return device_addrs_t(1, combine_dev_addr_vector(found_devices)); } //initialize the hint for a single device case UHD_ASSERT_THROW(hints.size() <= 1); hints.resize(1); //in case it was empty device_addr_t hint = hints[0]; device_addrs_t usrp2_addrs; //return an empty list of addresses when type is set to non-usrp2 if (hint.has_key("type") and hint["type"] != "usrp2") return usrp2_addrs; //if no address was specified, send a broadcast on each interface if (not hint.has_key("addr")){ BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs()){ //avoid the loopback device if (if_addrs.inet == asio::ip::address_v4::loopback().to_string()) continue; //create a new hint with this broadcast address device_addr_t new_hint = hint; new_hint["addr"] = if_addrs.bcast; //call discover with the new hint and append results device_addrs_t new_usrp2_addrs = usrp2_find(new_hint); usrp2_addrs.insert(usrp2_addrs.begin(), new_usrp2_addrs.begin(), new_usrp2_addrs.end() ); } return usrp2_addrs; } //create a udp transport to communicate std::string ctrl_port = boost::lexical_cast(USRP2_UDP_CTRL_PORT); udp_simple::sptr udp_transport = udp_simple::make_broadcast( hint["addr"], ctrl_port ); //send a hello control packet usrp2_ctrl_data_t ctrl_data_out; ctrl_data_out.proto_ver = htonl(USRP2_FW_COMPAT_NUM); ctrl_data_out.id = htonl(USRP2_CTRL_ID_WAZZUP_BRO); udp_transport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out))); //loop and recieve until the timeout boost::uint8_t usrp2_ctrl_data_in_mem[udp_simple::mtu]; //allocate max bytes for recv const usrp2_ctrl_data_t *ctrl_data_in = reinterpret_cast(usrp2_ctrl_data_in_mem); while(true){ size_t len = udp_transport->recv(asio::buffer(usrp2_ctrl_data_in_mem)); //std::cout << len << "\n"; if (len > offsetof(usrp2_ctrl_data_t, data) and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE){ //make a boost asio ipv4 with the raw addr in host byte order boost::asio::ip::address_v4 ip_addr(ntohl(ctrl_data_in->data.ip_addr)); device_addr_t new_addr; new_addr["type"] = "usrp2"; new_addr["addr"] = ip_addr.to_string(); //Attempt to read the name from the EEPROM and perform filtering. //This operation can throw due to compatibility mismatch. //In this case, the discovered device will be ignored. try{ mboard_eeprom_t mb_eeprom = usrp2_iface::make( udp_simple::make_connected(new_addr["addr"], num2str(USRP2_UDP_CTRL_PORT)) )->mb_eeprom; new_addr["name"] = mb_eeprom["name"]; new_addr["serial"] = mb_eeprom["serial"]; if ( (not hint.has_key("name") or hint["name"] == new_addr["name"]) and (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]) ){ usrp2_addrs.push_back(new_addr); } } catch(const std::exception &e){ uhd::warning::post( std::string("Ignoring discovered device\n") + e.what() ); } //dont break here, it will exit the while loop //just continue on to the next loop iteration } if (len == 0) break; //timeout } return usrp2_addrs; } /*********************************************************************** * Make **********************************************************************/ static device::sptr usrp2_make(const device_addr_t &device_addr){ sep_indexed_dev_addrs(device_addr); //create a ctrl and data transport for each address std::vector ctrl_transports; std::vector data_transports; std::vector err0_transports; const device_addrs_t device_addrs = sep_indexed_dev_addrs(device_addr); BOOST_FOREACH(const device_addr_t &dev_addr_i, device_addrs){ ctrl_transports.push_back(udp_simple::make_connected( dev_addr_i["addr"], num2str(USRP2_UDP_CTRL_PORT) )); data_transports.push_back(udp_zero_copy::make( dev_addr_i["addr"], num2str(USRP2_UDP_DATA_PORT), device_addr )); err0_transports.push_back(udp_zero_copy::make( dev_addr_i["addr"], num2str(USRP2_UDP_ERR0_PORT), device_addr )); } //create the usrp2 implementation guts return device::sptr(new usrp2_impl( ctrl_transports, data_transports, err0_transports, device_addrs )); } UHD_STATIC_BLOCK(register_usrp2_device){ device::register_device(&usrp2_find, &usrp2_make); } /*********************************************************************** * Structors **********************************************************************/ usrp2_impl::usrp2_impl( std::vector ctrl_transports, std::vector data_transports, std::vector err0_transports, const device_addrs_t &device_args ): _data_transports(data_transports), _err0_transports(err0_transports) { //setup rx otw type _rx_otw_type.width = 16; _rx_otw_type.shift = 0; _rx_otw_type.byteorder = uhd::otw_type_t::BO_BIG_ENDIAN; //setup tx otw type _tx_otw_type.width = 16; _tx_otw_type.shift = 0; _tx_otw_type.byteorder = uhd::otw_type_t::BO_BIG_ENDIAN; //!!!!! set the otw type here before continuing, its used below //create a new mboard handler for each control transport for(size_t i = 0; i < device_args.size(); i++){ _mboards.push_back(usrp2_mboard_impl::sptr(new usrp2_mboard_impl( i, ctrl_transports[i], data_transports[i], err0_transports[i], device_args[i], this->get_max_recv_samps_per_packet() ))); //use an empty name when there is only one mboard std::string name = (ctrl_transports.size() > 1)? boost::lexical_cast(i) : ""; _mboard_dict[name] = _mboards.back(); } //init the send and recv io io_init(); } usrp2_impl::~usrp2_impl(void){ /* NOP */ } /*********************************************************************** * Device Properties **********************************************************************/ void usrp2_impl::get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case DEVICE_PROP_NAME: if (_mboards.size() > 1) val = std::string("USRP2/N Series multi-device"); else val = std::string("USRP2/N Series device"); return; case DEVICE_PROP_MBOARD: val = _mboard_dict[key.name]->get_link(); return; case DEVICE_PROP_MBOARD_NAMES: val = prop_names_t(_mboard_dict.keys()); return; default: UHD_THROW_PROP_GET_ERROR(); } } void usrp2_impl::set(const wax::obj &, const wax::obj &){ UHD_THROW_PROP_SET_ERROR(); }