//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "usrp2_impl.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include //htonl and ntohl
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
namespace asio = boost::asio;
/***********************************************************************
* Helper Functions
**********************************************************************/
template std::string num2str(T num){
return boost::lexical_cast(num);
}
//! separate indexed device addresses into a vector of device addresses
device_addrs_t sep_indexed_dev_addrs(const device_addr_t &dev_addr){
//------------ support old deprecated way and print warning --------
if (dev_addr.has_key("addr")){
std::vector addrs = std::split_string(dev_addr["addr"]);
if (addrs.size() > 1){
device_addr_t fixed_dev_addr = dev_addr;
fixed_dev_addr.pop("addr");
for (size_t i = 0; i < addrs.size(); i++){
fixed_dev_addr[str(boost::format("addr%d") % i)] = addrs[i];
}
uhd::warning::post(
"addr = is deprecated.\n"
"To address a multi-device, use multiple = .\n"
"See the USRP-NXXX application notes. Two device example:\n"
" addr0 = 192.168.10.2\n"
" addr1 = 192.168.10.3\n"
);
return sep_indexed_dev_addrs(fixed_dev_addr);
}
}
//------------------------------------------------------------------
device_addrs_t dev_addrs;
BOOST_FOREACH(const std::string &key, dev_addr.keys()){
boost::cmatch matches;
if (not boost::regex_match(key.c_str(), matches, boost::regex("^(\\D+)(\\d*)$"))){
throw std::runtime_error("unknown key format: " + key);
}
std::string key_part(matches[1].first, matches[1].second);
std::string num_part(matches[2].first, matches[2].second);
size_t num = (num_part.empty())? 0 : boost::lexical_cast(num_part);
dev_addrs.resize(std::max(num+1, dev_addrs.size()));
dev_addrs[num][key_part] = dev_addr[key];
}
return dev_addrs;
}
//! combine a vector in device addresses into an indexed device address
device_addr_t combine_dev_addr_vector(const device_addrs_t &dev_addrs){
device_addr_t dev_addr;
for (size_t i = 0; i < dev_addrs.size(); i++){
BOOST_FOREACH(const std::string &key, dev_addrs[i].keys()){
dev_addr[str(boost::format("%s%d") % key % i)] = dev_addrs[i][key];
}
}
return dev_addr;
}
/***********************************************************************
* Discovery over the udp transport
**********************************************************************/
static device_addrs_t usrp2_find(const device_addr_t &hint_){
//handle the multi-device discovery
device_addrs_t hints = sep_indexed_dev_addrs(hint_);
if (hints.size() > 1){
device_addrs_t found_devices;
BOOST_FOREACH(const device_addr_t &hint_i, hints){
device_addrs_t found_devices_i = usrp2_find(hint_i);
if (found_devices_i.size() != 1) throw std::runtime_error(str(boost::format(
"Could not resolve device hint \"%s\" to a single device."
) % hint_i.to_string()));
found_devices.push_back(found_devices_i[0]);
}
return device_addrs_t(1, combine_dev_addr_vector(found_devices));
}
//initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); //in case it was empty
device_addr_t hint = hints[0];
device_addrs_t usrp2_addrs;
//return an empty list of addresses when type is set to non-usrp2
if (hint.has_key("type") and hint["type"] != "usrp2") return usrp2_addrs;
//if no address was specified, send a broadcast on each interface
if (not hint.has_key("addr")){
BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs()){
//avoid the loopback device
if (if_addrs.inet == asio::ip::address_v4::loopback().to_string()) continue;
//create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
//call discover with the new hint and append results
device_addrs_t new_usrp2_addrs = usrp2_find(new_hint);
usrp2_addrs.insert(usrp2_addrs.begin(),
new_usrp2_addrs.begin(), new_usrp2_addrs.end()
);
}
return usrp2_addrs;
}
//create a udp transport to communicate
std::string ctrl_port = boost::lexical_cast(USRP2_UDP_CTRL_PORT);
udp_simple::sptr udp_transport = udp_simple::make_broadcast(
hint["addr"], ctrl_port
);
//send a hello control packet
usrp2_ctrl_data_t ctrl_data_out;
ctrl_data_out.proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data_out.id = htonl(USRP2_CTRL_ID_WAZZUP_BRO);
udp_transport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out)));
//loop and recieve until the timeout
boost::uint8_t usrp2_ctrl_data_in_mem[udp_simple::mtu]; //allocate max bytes for recv
const usrp2_ctrl_data_t *ctrl_data_in = reinterpret_cast(usrp2_ctrl_data_in_mem);
while(true){
size_t len = udp_transport->recv(asio::buffer(usrp2_ctrl_data_in_mem));
//std::cout << len << "\n";
if (len > offsetof(usrp2_ctrl_data_t, data) and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE){
//make a boost asio ipv4 with the raw addr in host byte order
boost::asio::ip::address_v4 ip_addr(ntohl(ctrl_data_in->data.ip_addr));
device_addr_t new_addr;
new_addr["type"] = "usrp2";
new_addr["addr"] = ip_addr.to_string();
//Attempt to read the name from the EEPROM and perform filtering.
//This operation can throw due to compatibility mismatch.
//In this case, the discovered device will be ignored.
try{
mboard_eeprom_t mb_eeprom = usrp2_iface::make(
udp_simple::make_connected(new_addr["addr"], num2str(USRP2_UDP_CTRL_PORT))
)->mb_eeprom;
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = mb_eeprom["serial"];
if (
(not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
){
usrp2_addrs.push_back(new_addr);
}
}
catch(const std::exception &e){
uhd::warning::post(
std::string("Ignoring discovered device\n")
+ e.what()
);
}
//dont break here, it will exit the while loop
//just continue on to the next loop iteration
}
if (len == 0) break; //timeout
}
return usrp2_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr usrp2_make(const device_addr_t &device_addr){
sep_indexed_dev_addrs(device_addr);
//create a ctrl and data transport for each address
std::vector ctrl_transports;
std::vector data_transports;
std::vector err0_transports;
const device_addrs_t device_addrs = sep_indexed_dev_addrs(device_addr);
BOOST_FOREACH(const device_addr_t &dev_addr_i, device_addrs){
ctrl_transports.push_back(udp_simple::make_connected(
dev_addr_i["addr"], num2str(USRP2_UDP_CTRL_PORT)
));
data_transports.push_back(udp_zero_copy::make(
dev_addr_i["addr"], num2str(USRP2_UDP_DATA_PORT), device_addr
));
err0_transports.push_back(udp_zero_copy::make(
dev_addr_i["addr"], num2str(USRP2_UDP_ERR0_PORT), device_addr
));
}
//create the usrp2 implementation guts
return device::sptr(new usrp2_impl(
ctrl_transports, data_transports, err0_transports, device_addrs
));
}
UHD_STATIC_BLOCK(register_usrp2_device){
device::register_device(&usrp2_find, &usrp2_make);
}
/***********************************************************************
* Structors
**********************************************************************/
usrp2_impl::usrp2_impl(
std::vector ctrl_transports,
std::vector data_transports,
std::vector err0_transports,
const device_addrs_t &device_args
):
_data_transports(data_transports),
_err0_transports(err0_transports)
{
//setup rx otw type
_rx_otw_type.width = 16;
_rx_otw_type.shift = 0;
_rx_otw_type.byteorder = uhd::otw_type_t::BO_BIG_ENDIAN;
//setup tx otw type
_tx_otw_type.width = 16;
_tx_otw_type.shift = 0;
_tx_otw_type.byteorder = uhd::otw_type_t::BO_BIG_ENDIAN;
//!!!!! set the otw type here before continuing, its used below
//create a new mboard handler for each control transport
for(size_t i = 0; i < device_args.size(); i++){
_mboards.push_back(usrp2_mboard_impl::sptr(new usrp2_mboard_impl(
i, ctrl_transports[i], data_transports[i],
err0_transports[i], device_args[i],
this->get_max_recv_samps_per_packet()
)));
//use an empty name when there is only one mboard
std::string name = (ctrl_transports.size() > 1)? boost::lexical_cast(i) : "";
_mboard_dict[name] = _mboards.back();
}
//init the send and recv io
io_init();
}
usrp2_impl::~usrp2_impl(void){
/* NOP */
}
/***********************************************************************
* Device Properties
**********************************************************************/
void usrp2_impl::get(const wax::obj &key_, wax::obj &val){
named_prop_t key = named_prop_t::extract(key_);
//handle the get request conditioned on the key
switch(key.as()){
case DEVICE_PROP_NAME:
if (_mboards.size() > 1) val = std::string("USRP2/N Series multi-device");
else val = std::string("USRP2/N Series device");
return;
case DEVICE_PROP_MBOARD:
val = _mboard_dict[key.name]->get_link();
return;
case DEVICE_PROP_MBOARD_NAMES:
val = prop_names_t(_mboard_dict.keys());
return;
default: UHD_THROW_PROP_GET_ERROR();
}
}
void usrp2_impl::set(const wax::obj &, const wax::obj &){
UHD_THROW_PROP_SET_ERROR();
}