// // Copyright 2010-2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp2_impl.hpp" #include "usrp2_regs.hpp" #include #include #include #include #include #include #include #include #include static const double mimo_clock_delay_usrp2_rev4 = 4.18e-9; static const double mimo_clock_delay_usrp_n2xx = 0; //TODO static const int mimo_clock_sync_delay_cycles = 134; using namespace uhd; using namespace uhd::usrp; using namespace boost::posix_time; /*********************************************************************** * Structors **********************************************************************/ usrp2_mboard_impl::usrp2_mboard_impl( size_t index, transport::udp_simple::sptr ctrl_transport, transport::zero_copy_if::sptr data_transport, transport::zero_copy_if::sptr err0_transport, const device_addr_t &device_args, size_t recv_samps_per_packet ): _index(index), _iface(usrp2_iface::make(ctrl_transport)) { //Send a small data packet so the usrp2 knows the udp source port. //This setup must happen before further initialization occurs //or the async update packets will cause ICMP destination unreachable. transport::managed_send_buffer::sptr send_buff; static const boost::uint32_t data[2] = { uhd::htonx(boost::uint32_t(0 /* don't care seq num */)), uhd::htonx(boost::uint32_t(USRP2_INVALID_VRT_HEADER)) }; send_buff = data_transport->get_send_buff(); std::memcpy(send_buff->cast(), &data, sizeof(data)); send_buff->commit(sizeof(data)); send_buff = err0_transport->get_send_buff(); std::memcpy(send_buff->cast(), &data, sizeof(data)); send_buff->commit(sizeof(data)); //contruct the interfaces to mboard perifs _clock_ctrl = usrp2_clock_ctrl::make(_iface); _codec_ctrl = usrp2_codec_ctrl::make(_iface); //_gps_ctrl = usrp2_gps_ctrl::make(_iface); //if(_gps_ctrl->gps_detected()) std::cout << "GPS time: " << _gps_ctrl->get_time() << std::endl; //TODO move to dsp impl... //load the allowed decim/interp rates //_USRP2_RATES = range(4, 128+1, 1) + range(130, 256+1, 2) + range(260, 512+1, 4) _allowed_decim_and_interp_rates.clear(); for (size_t i = 4; i <= 128; i+=1){ _allowed_decim_and_interp_rates.push_back(i); } for (size_t i = 130; i <= 256; i+=2){ _allowed_decim_and_interp_rates.push_back(i); } for (size_t i = 260; i <= 512; i+=4){ _allowed_decim_and_interp_rates.push_back(i); } //setup the vrt rx registers _iface->poke32(_iface->regs.rx_ctrl_clear_overrun, 1); //reset _iface->poke32(_iface->regs.rx_ctrl_nsamps_per_pkt, recv_samps_per_packet); _iface->poke32(_iface->regs.rx_ctrl_nchannels, 1); _iface->poke32(_iface->regs.rx_ctrl_vrt_header, 0 | (0x1 << 28) //if data with stream id | (0x1 << 26) //has trailer | (0x3 << 22) //integer time other | (0x1 << 20) //fractional time sample count ); _iface->poke32(_iface->regs.rx_ctrl_vrt_stream_id, usrp2_impl::RECV_SID); _iface->poke32(_iface->regs.rx_ctrl_vrt_trailer, 0); _iface->poke32(_iface->regs.time64_tps, size_t(get_master_clock_freq())); //init the tx control registers _iface->poke32(_iface->regs.tx_ctrl_clear_state, 1); //reset _iface->poke32(_iface->regs.tx_ctrl_num_chan, 0); //1 channel _iface->poke32(_iface->regs.tx_ctrl_report_sid, usrp2_impl::ASYNC_SID); _iface->poke32(_iface->regs.tx_ctrl_policy, U2_FLAG_TX_CTRL_POLICY_NEXT_PACKET); //setting the cycles per update (disabled by default) const double ups_per_sec = device_args.cast("ups_per_sec", 0.0); if (ups_per_sec > 0.0){ const size_t cycles_per_up = size_t(_clock_ctrl->get_master_clock_rate()/ups_per_sec); _iface->poke32(_iface->regs.tx_ctrl_cycles_per_up, U2_FLAG_TX_CTRL_UP_ENB | cycles_per_up); } //setting the packets per update (enabled by default) const double ups_per_fifo = device_args.cast("ups_per_fifo", 8.0); if (ups_per_fifo > 0.0){ const size_t packets_per_up = size_t(usrp2_impl::sram_bytes/ups_per_fifo/data_transport->get_send_frame_size()); _iface->poke32(_iface->regs.tx_ctrl_packets_per_up, U2_FLAG_TX_CTRL_UP_ENB | packets_per_up); } //init the ddc init_ddc_config(); //init the duc init_duc_config(); //initialize the clock configuration if (device_args.has_key("mimo_mode")){ if (device_args["mimo_mode"] == "master"){ _mimo_clocking_mode_is_master = true; } else if (device_args["mimo_mode"] == "slave"){ _mimo_clocking_mode_is_master = false; } else throw std::runtime_error( "mimo_mode must be set to master or slave" ); } else { _mimo_clocking_mode_is_master = (_iface->peek32(_iface->regs.status) & (1 << 8)) != 0; } std::cout << boost::format("mboard%d MIMO %s") % _index % (_mimo_clocking_mode_is_master?"master":"slave") << std::endl; //init the clock config _clock_config = clock_config_t::internal(); update_clock_config(); //init the codec before the dboard codec_init(); //init the tx and rx dboards (do last) dboard_init(); //set default subdev specs (*this)[MBOARD_PROP_RX_SUBDEV_SPEC] = subdev_spec_t(); (*this)[MBOARD_PROP_TX_SUBDEV_SPEC] = subdev_spec_t(); } usrp2_mboard_impl::~usrp2_mboard_impl(void){ _iface->poke32(_iface->regs.tx_ctrl_cycles_per_up, 0); _iface->poke32(_iface->regs.tx_ctrl_packets_per_up, 0); } /*********************************************************************** * Helper Methods **********************************************************************/ void usrp2_mboard_impl::update_clock_config(void){ boost::uint32_t pps_flags = 0; //translate pps source enums switch(_clock_config.pps_source){ case clock_config_t::PPS_SMA: pps_flags |= U2_FLAG_TIME64_PPS_SMA; break; default: throw std::runtime_error("unhandled clock configuration pps source"); } //translate pps polarity enums switch(_clock_config.pps_polarity){ case clock_config_t::PPS_POS: pps_flags |= U2_FLAG_TIME64_PPS_POSEDGE; break; case clock_config_t::PPS_NEG: pps_flags |= U2_FLAG_TIME64_PPS_NEGEDGE; break; default: throw std::runtime_error("unhandled clock configuration pps polarity"); } //set the pps flags _iface->poke32(_iface->regs.time64_flags, pps_flags); //clock source ref 10mhz switch(_iface->get_rev()){ case usrp2_iface::USRP_N200: case usrp2_iface::USRP_N210: switch(_clock_config.ref_source){ case clock_config_t::REF_INT : _iface->poke32(_iface->regs.misc_ctrl_clock, 0x12); break; case clock_config_t::REF_SMA : _iface->poke32(_iface->regs.misc_ctrl_clock, 0x1C); break; default: throw std::runtime_error("unhandled clock configuration reference source"); } _clock_ctrl->enable_external_ref(true); //USRP2P has an internal 10MHz TCXO break; case usrp2_iface::USRP2_REV3: case usrp2_iface::USRP2_REV4: switch(_clock_config.ref_source){ case clock_config_t::REF_INT : _iface->poke32(_iface->regs.misc_ctrl_clock, 0x10); break; case clock_config_t::REF_SMA : _iface->poke32(_iface->regs.misc_ctrl_clock, 0x1C); break; default: throw std::runtime_error("unhandled clock configuration reference source"); } _clock_ctrl->enable_external_ref(_clock_config.ref_source != clock_config_t::REF_INT); break; case usrp2_iface::USRP_NXXX: break; } //Handle the serdes clocking based on master/slave mode: // - Masters always drive the clock over serdes. // - Slaves always lock to this serdes clock. // - Slaves lock their time over the serdes. if (_mimo_clocking_mode_is_master){ _clock_ctrl->enable_mimo_clock_out(true); switch(_iface->get_rev()){ case usrp2_iface::USRP_N200: case usrp2_iface::USRP_N210: _clock_ctrl->set_mimo_clock_delay(mimo_clock_delay_usrp_n2xx); break; case usrp2_iface::USRP2_REV4: _clock_ctrl->set_mimo_clock_delay(mimo_clock_delay_usrp2_rev4); break; default: break; //not handled } _iface->poke32(_iface->regs.time64_mimo_sync, 0); } else{ _iface->poke32(_iface->regs.misc_ctrl_clock, 0x15); _clock_ctrl->enable_external_ref(true); _clock_ctrl->enable_mimo_clock_out(false); _iface->poke32(_iface->regs.time64_mimo_sync, (1 << 8) | (mimo_clock_sync_delay_cycles & 0xff) ); } } void usrp2_mboard_impl::set_time_spec(const time_spec_t &time_spec, bool now){ //set the ticks _iface->poke32(_iface->regs.time64_ticks, time_spec.get_tick_count(get_master_clock_freq())); //set the flags register boost::uint32_t imm_flags = (now)? U2_FLAG_TIME64_LATCH_NOW : U2_FLAG_TIME64_LATCH_NEXT_PPS; _iface->poke32(_iface->regs.time64_imm, imm_flags); //set the seconds (latches in all 3 registers) _iface->poke32(_iface->regs.time64_secs, boost::uint32_t(time_spec.get_full_secs())); } void usrp2_mboard_impl::handle_overflow(void){ if (_continuous_streaming){ //re-issue the stream command if already continuous this->issue_ddc_stream_cmd(stream_cmd_t::STREAM_MODE_START_CONTINUOUS); } } void usrp2_mboard_impl::issue_ddc_stream_cmd(const stream_cmd_t &stream_cmd){ _continuous_streaming = stream_cmd.stream_mode == stream_cmd_t::STREAM_MODE_START_CONTINUOUS; _iface->poke32(_iface->regs.rx_ctrl_stream_cmd, dsp_type1::calc_stream_cmd_word(stream_cmd)); _iface->poke32(_iface->regs.rx_ctrl_time_secs, boost::uint32_t(stream_cmd.time_spec.get_full_secs())); _iface->poke32(_iface->regs.rx_ctrl_time_ticks, stream_cmd.time_spec.get_tick_count(get_master_clock_freq())); } /*********************************************************************** * MBoard Get Properties **********************************************************************/ static const std::string dboard_name = "0"; void usrp2_mboard_impl::get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case MBOARD_PROP_NAME: val = _iface->get_cname() + " mboard"; return; case MBOARD_PROP_OTHERS: val = prop_names_t(); return; case MBOARD_PROP_RX_DBOARD: UHD_ASSERT_THROW(key.name == dboard_name); val = _rx_dboard_proxy->get_link(); return; case MBOARD_PROP_RX_DBOARD_NAMES: val = prop_names_t(1, dboard_name); return; case MBOARD_PROP_TX_DBOARD: UHD_ASSERT_THROW(key.name == dboard_name); val = _tx_dboard_proxy->get_link(); return; case MBOARD_PROP_TX_DBOARD_NAMES: val = prop_names_t(1, dboard_name); return; case MBOARD_PROP_RX_DSP: UHD_ASSERT_THROW(key.name == ""); val = _rx_dsp_proxy->get_link(); return; case MBOARD_PROP_RX_DSP_NAMES: val = prop_names_t(1, ""); return; case MBOARD_PROP_TX_DSP: UHD_ASSERT_THROW(key.name == ""); val = _tx_dsp_proxy->get_link(); return; case MBOARD_PROP_TX_DSP_NAMES: val = prop_names_t(1, ""); return; case MBOARD_PROP_CLOCK_CONFIG: val = _clock_config; return; case MBOARD_PROP_TIME_NOW: while(true){ uint32_t secs = _iface->peek32(_iface->regs.time64_secs_rb_imm); uint32_t ticks = _iface->peek32(_iface->regs.time64_ticks_rb_imm); if (secs != _iface->peek32(_iface->regs.time64_secs_rb_imm)) continue; val = time_spec_t(secs, ticks, get_master_clock_freq()); return; } case MBOARD_PROP_TIME_PPS: while(true){ uint32_t secs = _iface->peek32(_iface->regs.time64_secs_rb_pps); uint32_t ticks = _iface->peek32(_iface->regs.time64_ticks_rb_pps); if (secs != _iface->peek32(_iface->regs.time64_secs_rb_pps)) continue; val = time_spec_t(secs, ticks, get_master_clock_freq()); return; } case MBOARD_PROP_RX_SUBDEV_SPEC: val = _rx_subdev_spec; return; case MBOARD_PROP_TX_SUBDEV_SPEC: val = _tx_subdev_spec; return; case MBOARD_PROP_EEPROM_MAP: val = _iface->mb_eeprom; return; default: UHD_THROW_PROP_GET_ERROR(); } } /*********************************************************************** * MBoard Set Properties **********************************************************************/ void usrp2_mboard_impl::set(const wax::obj &key, const wax::obj &val){ //handle the set request conditioned on the key switch(key.as()){ case MBOARD_PROP_CLOCK_CONFIG: _clock_config = val.as(); update_clock_config(); return; case MBOARD_PROP_TIME_NOW: set_time_spec(val.as(), true); return; case MBOARD_PROP_TIME_PPS: set_time_spec(val.as(), false); return; case MBOARD_PROP_STREAM_CMD: issue_ddc_stream_cmd(val.as()); return; case MBOARD_PROP_RX_SUBDEV_SPEC: _rx_subdev_spec = val.as(); verify_rx_subdev_spec(_rx_subdev_spec, this->get_link()); //sanity check UHD_ASSERT_THROW(_rx_subdev_spec.size() == 1); //set the mux _iface->poke32(_iface->regs.dsp_rx_mux, dsp_type1::calc_rx_mux_word( _dboard_manager->get_rx_subdev(_rx_subdev_spec.front().sd_name)[SUBDEV_PROP_CONNECTION].as() )); return; case MBOARD_PROP_TX_SUBDEV_SPEC: _tx_subdev_spec = val.as(); verify_tx_subdev_spec(_tx_subdev_spec, this->get_link()); //sanity check UHD_ASSERT_THROW(_tx_subdev_spec.size() == 1); //set the mux _iface->poke32(_iface->regs.dsp_tx_mux, dsp_type1::calc_tx_mux_word( _dboard_manager->get_tx_subdev(_tx_subdev_spec.front().sd_name)[SUBDEV_PROP_CONNECTION].as() )); return; case MBOARD_PROP_EEPROM_MAP: // Step1: commit the map, writing only those values set. // Step2: readback the entire eeprom map into the iface. val.as().commit(*_iface, mboard_eeprom_t::MAP_N100); _iface->mb_eeprom = mboard_eeprom_t(*_iface, mboard_eeprom_t::MAP_N100); return; default: UHD_THROW_PROP_SET_ERROR(); } }