// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp2_iface.hpp" #include "clock_control.hpp" #include "usrp2_regs.hpp" //wishbone address constants #include #include #include #include #include //htonl and ntohl #include #include #include "ad7922_regs.hpp" //aux adc #include "ad5624_regs.hpp" //aux dac using namespace uhd; using namespace uhd::usrp; class usrp2_dboard_iface : public dboard_iface{ public: usrp2_dboard_iface(usrp2_iface::sptr iface, clock_control::sptr clk_ctrl); ~usrp2_dboard_iface(void); void write_aux_dac(unit_t, int, float); float read_aux_adc(unit_t, int); void set_atr_reg(unit_t, atr_reg_t, boost::uint16_t); void set_gpio_ddr(unit_t, boost::uint16_t); boost::uint16_t read_gpio(unit_t); void write_i2c(int, const byte_vector_t &); byte_vector_t read_i2c(int, size_t); double get_clock_rate(unit_t); void set_clock_enabled(unit_t, bool); bool get_clock_enabled(unit_t); void write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ); boost::uint32_t read_write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ); private: usrp2_iface::sptr _iface; clock_control::sptr _clk_ctrl; boost::uint32_t _ddr_shadow; uhd::dict _dac_regs; void _write_aux_dac(unit_t); }; /*********************************************************************** * Make Function **********************************************************************/ dboard_iface::sptr make_usrp2_dboard_iface( usrp2_iface::sptr iface, clock_control::sptr clk_ctrl ){ return dboard_iface::sptr(new usrp2_dboard_iface(iface, clk_ctrl)); } /*********************************************************************** * Structors **********************************************************************/ usrp2_dboard_iface::usrp2_dboard_iface(usrp2_iface::sptr iface, clock_control::sptr clk_ctrl){ _iface = iface; _clk_ctrl = clk_ctrl; _ddr_shadow = 0; //set the selection mux to use atr boost::uint32_t new_sels = 0x0; for(size_t i = 0; i < 16; i++){ new_sels |= FRF_GPIO_SEL_ATR << (i*2); } _iface->poke32(FR_GPIO_TX_SEL, new_sels); _iface->poke32(FR_GPIO_RX_SEL, new_sels); //reset the aux dacs _dac_regs[UNIT_RX] = ad5624_regs_t(); _dac_regs[UNIT_TX] = ad5624_regs_t(); BOOST_FOREACH(unit_t unit, _dac_regs.keys()){ _dac_regs[unit].data = 1; _dac_regs[unit].addr = ad5624_regs_t::ADDR_ALL; _dac_regs[unit].cmd = ad5624_regs_t::CMD_RESET; this->_write_aux_dac(unit); } } usrp2_dboard_iface::~usrp2_dboard_iface(void){ /* NOP */ } /*********************************************************************** * Clocks **********************************************************************/ double usrp2_dboard_iface::get_clock_rate(unit_t){ return _iface->get_master_clock_freq(); } void usrp2_dboard_iface::set_clock_enabled(unit_t unit, bool enb){ switch(unit){ case UNIT_RX: _clk_ctrl->enable_rx_dboard_clock(enb); return; case UNIT_TX: _clk_ctrl->enable_tx_dboard_clock(enb); return; } } /*********************************************************************** * GPIO **********************************************************************/ static int unit_to_shift(dboard_iface::unit_t unit){ switch(unit){ case dboard_iface::UNIT_RX: return 0; case dboard_iface::UNIT_TX: return 16; } throw std::runtime_error("unknown unit type"); } void usrp2_dboard_iface::set_gpio_ddr(unit_t unit, boost::uint16_t value){ _ddr_shadow = \ (_ddr_shadow & ~(0xffff << unit_to_shift(unit))) | (boost::uint32_t(value) << unit_to_shift(unit)); _iface->poke32(FR_GPIO_DDR, _ddr_shadow); } boost::uint16_t usrp2_dboard_iface::read_gpio(unit_t unit){ return boost::uint16_t(_iface->peek32(FR_GPIO_IO) >> unit_to_shift(unit)); } void usrp2_dboard_iface::set_atr_reg(unit_t unit, atr_reg_t atr, boost::uint16_t value){ //define mapping of unit to atr regs to register address static const uhd::dict< unit_t, uhd::dict > unit_to_atr_to_addr = boost::assign::map_list_of (UNIT_RX, boost::assign::map_list_of (ATR_REG_IDLE, FR_ATR_IDLE_RXSIDE) (ATR_REG_TX_ONLY, FR_ATR_INTX_RXSIDE) (ATR_REG_RX_ONLY, FR_ATR_INRX_RXSIDE) (ATR_REG_FULL_DUPLEX, FR_ATR_FULL_RXSIDE) ) (UNIT_TX, boost::assign::map_list_of (ATR_REG_IDLE, FR_ATR_IDLE_TXSIDE) (ATR_REG_TX_ONLY, FR_ATR_INTX_TXSIDE) (ATR_REG_RX_ONLY, FR_ATR_INRX_TXSIDE) (ATR_REG_FULL_DUPLEX, FR_ATR_FULL_TXSIDE) ) ; _iface->poke16(unit_to_atr_to_addr[unit][atr], value); } /*********************************************************************** * SPI **********************************************************************/ /*! * Static function to convert a unit type enum * to an over-the-wire value for the spi device. * \param unit the dboard interface unit type enum * \return an over the wire representation */ static boost::uint8_t unit_to_otw_spi_dev(dboard_iface::unit_t unit){ switch(unit){ case dboard_iface::UNIT_TX: return SPI_SS_TX_DB; case dboard_iface::UNIT_RX: return SPI_SS_RX_DB; } throw std::invalid_argument("unknown unit type"); } void usrp2_dboard_iface::write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ){ _iface->transact_spi(unit_to_otw_spi_dev(unit), config, data, num_bits, false /*no rb*/); } boost::uint32_t usrp2_dboard_iface::read_write_spi( unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits ){ return _iface->transact_spi(unit_to_otw_spi_dev(unit), config, data, num_bits, true /*rb*/); } /*********************************************************************** * I2C **********************************************************************/ void usrp2_dboard_iface::write_i2c(int i2c_addr, const byte_vector_t &buf){ //setup the out data usrp2_ctrl_data_t out_data; out_data.id = htonl(USRP2_CTRL_ID_WRITE_THESE_I2C_VALUES_BRO); out_data.data.i2c_args.addr = i2c_addr; out_data.data.i2c_args.bytes = buf.size(); //limitation of i2c transaction size ASSERT_THROW(buf.size() <= sizeof(out_data.data.i2c_args.data)); //copy in the data std::copy(buf.begin(), buf.end(), out_data.data.i2c_args.data); //send and recv usrp2_ctrl_data_t in_data = _iface->ctrl_send_and_recv(out_data); ASSERT_THROW(htonl(in_data.id) == USRP2_CTRL_ID_COOL_IM_DONE_I2C_WRITE_DUDE); } byte_vector_t usrp2_dboard_iface::read_i2c(int i2c_addr, size_t num_bytes){ //setup the out data usrp2_ctrl_data_t out_data; out_data.id = htonl(USRP2_CTRL_ID_DO_AN_I2C_READ_FOR_ME_BRO); out_data.data.i2c_args.addr = i2c_addr; out_data.data.i2c_args.bytes = num_bytes; //limitation of i2c transaction size ASSERT_THROW(num_bytes <= sizeof(out_data.data.i2c_args.data)); //send and recv usrp2_ctrl_data_t in_data = _iface->ctrl_send_and_recv(out_data); ASSERT_THROW(htonl(in_data.id) == USRP2_CTRL_ID_HERES_THE_I2C_DATA_DUDE); ASSERT_THROW(in_data.data.i2c_args.addr = num_bytes); //copy out the data byte_vector_t result(num_bytes); std::copy(in_data.data.i2c_args.data, in_data.data.i2c_args.data + num_bytes, result.begin()); return result; } /*********************************************************************** * Aux DAX/ADC **********************************************************************/ void usrp2_dboard_iface::_write_aux_dac(unit_t unit){ static const uhd::dict unit_to_spi_dac = boost::assign::map_list_of (UNIT_RX, SPI_SS_RX_DAC) (UNIT_TX, SPI_SS_TX_DAC) ; _iface->transact_spi( unit_to_spi_dac[unit], spi_config_t::EDGE_FALL, _dac_regs[unit].get_reg(), 24, false /*no rb*/ ); } void usrp2_dboard_iface::write_aux_dac(unit_t unit, int which, float value){ _dac_regs[unit].data = boost::math::iround(4095*value/3.3); _dac_regs[unit].cmd = ad5624_regs_t::CMD_WR_UP_DAC_CHAN_N; switch(which){ case 0: _dac_regs[unit].addr = ad5624_regs_t::ADDR_DAC_A; break; case 1: _dac_regs[unit].addr = ad5624_regs_t::ADDR_DAC_B; break; case 2: _dac_regs[unit].addr = ad5624_regs_t::ADDR_DAC_C; break; case 3: _dac_regs[unit].addr = ad5624_regs_t::ADDR_DAC_D; break; default: throw std::runtime_error("not a possible aux dac, must be 0, 1, 2, or 3"); } this->_write_aux_dac(unit); } float usrp2_dboard_iface::read_aux_adc(unit_t unit, int which){ static const uhd::dict unit_to_spi_adc = boost::assign::map_list_of (UNIT_RX, SPI_SS_RX_ADC) (UNIT_TX, SPI_SS_TX_ADC) ; //setup spi config args spi_config_t config; config.mosi_edge = spi_config_t::EDGE_FALL; config.miso_edge = spi_config_t::EDGE_RISE; //setup the spi registers ad7922_regs_t ad7922_regs; ad7922_regs.mod = which; //normal mode: mod == chn ad7922_regs.chn = which; //write and read spi _iface->transact_spi( unit_to_spi_adc[unit], config, ad7922_regs.get_reg(), 16, false /*no rb*/ ); boost::uint16_t reg = _iface->transact_spi( unit_to_spi_adc[unit], config, ad7922_regs.get_reg(), 16, true /*rb*/ ); ad7922_regs.set_reg(reg); //convert to voltage and return return float(3.3*ad7922_regs.result/4095); }