// // Copyright 2010-2012,2014 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "usrp1_impl.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; namespace { constexpr uint16_t USRP1_VENDOR_ID = 0xfffe; constexpr uint16_t USRP1_PRODUCT_ID = 0x0002; constexpr int64_t REENUMERATION_TIMEOUT_MS = 3000; } // namespace const std::vector usrp1_impl::_dboard_slots{ usrp1_impl::DBOARD_SLOT_A, usrp1_impl::DBOARD_SLOT_B}; /*********************************************************************** * Discovery **********************************************************************/ static device_addrs_t usrp1_find(const device_addr_t& hint) { device_addrs_t usrp1_addrs; // return an empty list of addresses when type is set to non-usrp1 if (hint.has_key("type") and hint["type"] != "usrp1") return usrp1_addrs; // Return an empty list of addresses when an address or resource is specified, // since an address and resource is intended for a different, non-USB, device. if (hint.has_key("addr") || hint.has_key("resource")) return usrp1_addrs; uint16_t vid, pid; if (hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "usrp1") { vid = uhd::cast::hexstr_cast(hint.get("vid")); pid = uhd::cast::hexstr_cast(hint.get("pid")); } else { vid = USRP1_VENDOR_ID; pid = USRP1_PRODUCT_ID; } // Important note: // The get device list calls are nested inside the for loop. // This allows the usb guts to decontruct when not in use, // so that re-enumeration after fw load can occur successfully. // This requirement is a courtesy of libusb1.0 on windows. // find the usrps and load firmware size_t found = 0; for (usb_device_handle::sptr handle : usb_device_handle::get_device_list(vid, pid)) { // extract the firmware path for the USRP1 std::string usrp1_fw_image; try { usrp1_fw_image = find_image_path(hint.get("fw", "usrp1_fw.ihx")); } catch (...) { UHD_LOGGER_WARNING("USRP1") << boost::format("Could not locate USRP1 firmware. %s") % print_utility_error("uhd_images_downloader.py"); } UHD_LOGGER_DEBUG("USRP1") << "USRP1 firmware image: " << usrp1_fw_image; usb_control::sptr control; try { control = usb_control::make(handle, 0); } catch (const uhd::exception&) { continue; } // ignore claimed fx2_ctrl::make(control)->usrp_load_firmware(usrp1_fw_image); found++; } // get descriptors again with serial number, but using the initialized VID/PID now // since we have firmware vid = USRP1_VENDOR_ID; pid = USRP1_PRODUCT_ID; const auto timeout_time = std::chrono::steady_clock::now() + std::chrono::milliseconds(REENUMERATION_TIMEOUT_MS); // search for the device until found or timeout while (std::chrono::steady_clock::now() < timeout_time and usrp1_addrs.empty() and found != 0) { for (usb_device_handle::sptr handle : usb_device_handle::get_device_list(vid, pid)) { usb_control::sptr control; try { control = usb_control::make(handle, 0); } catch (const uhd::exception&) { continue; } // ignore claimed fx2_ctrl::sptr fx2_ctrl = fx2_ctrl::make(control); const mboard_eeprom_t mb_eeprom = usrp1_impl::get_mb_eeprom(fx2_ctrl); device_addr_t new_addr; new_addr["type"] = "usrp1"; new_addr["name"] = mb_eeprom["name"]; new_addr["serial"] = handle->get_serial(); // this is a found usrp1 when the hint serial and name match or blank if ((not hint.has_key("name") or hint["name"] == new_addr["name"]) and (not hint.has_key("serial") or hint["serial"] == new_addr["serial"])) { usrp1_addrs.push_back(new_addr); } } } return usrp1_addrs; } /*********************************************************************** * Make **********************************************************************/ static device::sptr usrp1_make(const device_addr_t& device_addr) { return device::sptr(new usrp1_impl(device_addr)); } UHD_STATIC_BLOCK(register_usrp1_device) { device::register_device(&usrp1_find, &usrp1_make, device::USRP); } /*********************************************************************** * Structors **********************************************************************/ usrp1_impl::usrp1_impl(const device_addr_t& device_addr) { UHD_LOGGER_INFO("USRP1") << "Opening a USRP1 device..."; _type = device::USRP; // extract the FPGA path for the USRP1 std::string usrp1_fpga_image = find_image_path(device_addr.get("fpga", "usrp1_fpga.rbf")); UHD_LOGGER_DEBUG("USRP1") << "USRP1 FPGA image: " << usrp1_fpga_image; // try to match the given device address with something on the USB bus std::vector device_list = usb_device_handle::get_device_list(USRP1_VENDOR_ID, USRP1_PRODUCT_ID); // locate the matching handle in the device list usb_device_handle::sptr handle; for (usb_device_handle::sptr dev_handle : device_list) { if (dev_handle->get_serial() == device_addr["serial"]) { handle = dev_handle; break; } } UHD_ASSERT_THROW(handle.get() != NULL); // better be found //////////////////////////////////////////////////////////////////// // Create controller objects //////////////////////////////////////////////////////////////////// // usb_control::sptr usb_ctrl = usb_control::make(handle); _fx2_ctrl = fx2_ctrl::make(usb_control::make(handle, 0)); _fx2_ctrl->usrp_load_fpga(usrp1_fpga_image); _fx2_ctrl->usrp_init(); _data_transport = usb_zero_copy::make(handle, // identifier 2, 6, // IN interface, endpoint 1, 2, // OUT interface, endpoint device_addr // param hints ); _iface = usrp1_iface::make(_fx2_ctrl); _soft_time_ctrl = soft_time_ctrl::make( std::bind(&usrp1_impl::rx_stream_on_off, this, std::placeholders::_1)); _dbc["A"]; _dbc["B"]; // ensure that keys exist // Normal mode with no loopback or Rx counting _iface->poke32(FR_MODE, 0x00000000); _iface->poke32(FR_DEBUG_EN, 0x00000000); UHD_LOGGER_DEBUG("USRP1") << "USRP1 Capabilities" << " number of duc's: " << get_num_ddcs() << " number of ddc's: " << get_num_ducs() << " rx halfband: " << has_rx_halfband() << " tx halfband: " << has_tx_halfband(); //////////////////////////////////////////////////////////////////// // Initialize the properties tree //////////////////////////////////////////////////////////////////// _rx_dc_offset_shadow = 0; _tree = property_tree::make(); _tree->create("/name").set("USRP1 Device"); const fs_path mb_path = "/mboards/0"; _tree->create(mb_path / "name").set("USRP1"); _tree->create(mb_path / "load_eeprom") .add_coerced_subscriber( std::bind(&fx2_ctrl::usrp_load_eeprom, _fx2_ctrl, std::placeholders::_1)); //////////////////////////////////////////////////////////////////// // create user-defined control objects //////////////////////////////////////////////////////////////////// _tree->create>(mb_path / "user" / "regs") .add_coerced_subscriber( std::bind(&usrp1_impl::set_reg, this, std::placeholders::_1)); //////////////////////////////////////////////////////////////////// // setup the mboard eeprom //////////////////////////////////////////////////////////////////// // const mboard_eeprom_t mb_eeprom(*_fx2_ctrl, USRP1_EEPROM_MAP_KEY); const mboard_eeprom_t mb_eeprom = this->get_mb_eeprom(_fx2_ctrl); _tree->create(mb_path / "eeprom") .set(mb_eeprom) .add_coerced_subscriber( std::bind(&usrp1_impl::set_mb_eeprom, this, std::placeholders::_1)); //////////////////////////////////////////////////////////////////// // create clock control objects //////////////////////////////////////////////////////////////////// _master_clock_rate = 64e6; if (device_addr.has_key("mcr")) { try { _master_clock_rate = std::stod(device_addr["mcr"]); } catch (const std::exception& e) { UHD_LOGGER_ERROR("USRP1") << "Error parsing FPGA clock rate from device address: " << e.what(); } } else if (not mb_eeprom["mcr"].empty()) { try { _master_clock_rate = std::stod(mb_eeprom["mcr"]); } catch (const std::exception& e) { UHD_LOGGER_ERROR("USRP1") << "Error parsing FPGA clock rate from EEPROM: " << e.what(); } } UHD_LOGGER_INFO("USRP1") << boost::format("Using FPGA clock rate of %fMHz...") % (_master_clock_rate / 1e6); _tree->create(mb_path / "tick_rate") .add_coerced_subscriber( std::bind(&usrp1_impl::update_tick_rate, this, std::placeholders::_1)) .set(_master_clock_rate); //////////////////////////////////////////////////////////////////// // create codec control objects //////////////////////////////////////////////////////////////////// for (const std::string& db : _dbc.keys()) { _dbc[db].codec = usrp1_codec_ctrl::make( _iface, (db == "A") ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B); const fs_path rx_codec_path = mb_path / "rx_codecs" / db; const fs_path tx_codec_path = mb_path / "tx_codecs" / db; _tree->create(rx_codec_path / "name").set("ad9522"); _tree->create(rx_codec_path / "gains/pga/range") .set(usrp1_codec_ctrl::rx_pga_gain_range); _tree->create(rx_codec_path / "gains/pga/value") .set_coercer(std::bind( &usrp1_impl::update_rx_codec_gain, this, db, std::placeholders::_1)) .set(0.0); _tree->create(tx_codec_path / "name").set("ad9522"); _tree->create(tx_codec_path / "gains/pga/range") .set(usrp1_codec_ctrl::tx_pga_gain_range); _tree->create(tx_codec_path / "gains/pga/value") .add_coerced_subscriber(std::bind(&usrp1_codec_ctrl::set_tx_pga_gain, _dbc[db].codec, std::placeholders::_1)) .set_publisher(std::bind(&usrp1_codec_ctrl::get_tx_pga_gain, _dbc[db].codec)) .set(0.0); } //////////////////////////////////////////////////////////////////// // and do the misc mboard sensors //////////////////////////////////////////////////////////////////// // none for now... _tree->create(mb_path / "sensors"); // phony property so this dir exists //////////////////////////////////////////////////////////////////// // create frontend control objects //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "rx_subdev_spec") .set(subdev_spec_t()) .add_coerced_subscriber( std::bind(&usrp1_impl::update_rx_subdev_spec, this, std::placeholders::_1)); _tree->create(mb_path / "tx_subdev_spec") .set(subdev_spec_t()) .add_coerced_subscriber( std::bind(&usrp1_impl::update_tx_subdev_spec, this, std::placeholders::_1)); for (const std::string& db : _dbc.keys()) { const fs_path rx_fe_path = mb_path / "rx_frontends" / db; _tree->create>(rx_fe_path / "dc_offset" / "value") .set_coercer( std::bind(&usrp1_impl::set_rx_dc_offset, this, db, std::placeholders::_1)) .set(std::complex(0.0, 0.0)); _tree->create(rx_fe_path / "dc_offset" / "enable") .add_coerced_subscriber(std::bind( &usrp1_impl::set_enb_rx_dc_offset, this, db, std::placeholders::_1)) .set(true); } //////////////////////////////////////////////////////////////////// // create rx dsp control objects //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "rx_dsps"); // dummy in case we have none for (size_t dspno = 0; dspno < get_num_ddcs(); dspno++) { fs_path rx_dsp_path = mb_path / str(boost::format("rx_dsps/%u") % dspno); _tree->create(rx_dsp_path / "rate/range") .set_publisher(std::bind(&usrp1_impl::get_rx_dsp_host_rates, this)); _tree->create(rx_dsp_path / "rate/value") .set(1e6) // some default rate .set_coercer(std::bind( &usrp1_impl::update_rx_samp_rate, this, dspno, std::placeholders::_1)); _tree->create(rx_dsp_path / "freq/value") .set_coercer(std::bind( &usrp1_impl::update_rx_dsp_freq, this, dspno, std::placeholders::_1)); _tree->create(rx_dsp_path / "freq/range") .set_publisher(std::bind(&usrp1_impl::get_rx_dsp_freq_range, this)); _tree->create(rx_dsp_path / "stream_cmd"); if (dspno == 0) { // only add_coerced_subscriber the callback for dspno 0 since it will stream // all dsps _tree->access(rx_dsp_path / "stream_cmd") .add_coerced_subscriber(std::bind(&soft_time_ctrl::issue_stream_cmd, _soft_time_ctrl, std::placeholders::_1)); } } //////////////////////////////////////////////////////////////////// // create tx dsp control objects //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "tx_dsps"); // dummy in case we have none for (size_t dspno = 0; dspno < get_num_ducs(); dspno++) { fs_path tx_dsp_path = mb_path / str(boost::format("tx_dsps/%u") % dspno); _tree->create(tx_dsp_path / "rate/range") .set_publisher(std::bind(&usrp1_impl::get_tx_dsp_host_rates, this)); _tree->create(tx_dsp_path / "rate/value") .set(1e6) // some default rate .set_coercer(std::bind( &usrp1_impl::update_tx_samp_rate, this, dspno, std::placeholders::_1)); _tree->create(tx_dsp_path / "freq/value") .set_coercer(std::bind( &usrp1_impl::update_tx_dsp_freq, this, dspno, std::placeholders::_1)); _tree->create(tx_dsp_path / "freq/range") .set_publisher(std::bind(&usrp1_impl::get_tx_dsp_freq_range, this)); } //////////////////////////////////////////////////////////////////// // create time control objects //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "time/now") .set_publisher(std::bind(&soft_time_ctrl::get_time, _soft_time_ctrl)) .add_coerced_subscriber( std::bind(&soft_time_ctrl::set_time, _soft_time_ctrl, std::placeholders::_1)); _tree->create>(mb_path / "clock_source/options") .set(std::vector(1, "internal")); _tree->create>(mb_path / "time_source/options") .set(std::vector(1, "none")); _tree->create(mb_path / "clock_source/value").set("internal"); _tree->create(mb_path / "time_source/value").set("none"); //////////////////////////////////////////////////////////////////// // create dboard control objects //////////////////////////////////////////////////////////////////// for (const std::string& db : _dbc.keys()) { // read the dboard eeprom to extract the dboard ids dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom; rx_db_eeprom.load(*_fx2_ctrl, (db == "A") ? (I2C_ADDR_RX_A) : (I2C_ADDR_RX_B)); tx_db_eeprom.load(*_fx2_ctrl, (db == "A") ? (I2C_ADDR_TX_A) : (I2C_ADDR_TX_B)); gdb_eeprom.load( *_fx2_ctrl, (db == "A") ? (I2C_ADDR_TX_A ^ 5) : (I2C_ADDR_TX_B ^ 5)); // disable rx dc offset if LFRX if (rx_db_eeprom.id == 0x000f) _tree->access(mb_path / "rx_frontends" / db / "dc_offset" / "enable") .set(false); // create the properties and register subscribers _tree->create(mb_path / "dboards" / db / "rx_eeprom") .set(rx_db_eeprom) .add_coerced_subscriber(std::bind( &usrp1_impl::set_db_eeprom, this, db, "rx", std::placeholders::_1)); _tree->create(mb_path / "dboards" / db / "tx_eeprom") .set(tx_db_eeprom) .add_coerced_subscriber(std::bind( &usrp1_impl::set_db_eeprom, this, db, "tx", std::placeholders::_1)); _tree->create(mb_path / "dboards" / db / "gdb_eeprom") .set(gdb_eeprom) .add_coerced_subscriber(std::bind( &usrp1_impl::set_db_eeprom, this, db, "gdb", std::placeholders::_1)); // create a new dboard interface and manager dboard_iface::sptr dboard_iface = make_dboard_iface(_iface, _dbc[db].codec, (db == "A") ? DBOARD_SLOT_A : DBOARD_SLOT_B, _master_clock_rate, rx_db_eeprom.id); _dbc[db].dboard_manager = dboard_manager::make(rx_db_eeprom.id, tx_db_eeprom.id, gdb_eeprom.id, dboard_iface, _tree->subtree(mb_path / "dboards" / db)); // init the subdev specs if we have a dboard (wont leave this loop empty) if (rx_db_eeprom.id != dboard_id_t::none() or _rx_subdev_spec.empty()) { _rx_subdev_spec = subdev_spec_t( db + ":" + _tree->list(mb_path / "dboards" / db / "rx_frontends").at(0)); } if (tx_db_eeprom.id != dboard_id_t::none() or _tx_subdev_spec.empty()) { _tx_subdev_spec = subdev_spec_t( db + ":" + _tree->list(mb_path / "dboards" / db / "tx_frontends").at(0)); } } // initialize io handling this->io_init(); //////////////////////////////////////////////////////////////////// // do some post-init tasks //////////////////////////////////////////////////////////////////// this->update_rates(); // reset cordic rates and their properties to zero for (const std::string& name : _tree->list(mb_path / "rx_dsps")) { _tree->access(mb_path / "rx_dsps" / name / "freq" / "value").set(0.0); } if (!_tree->list(mb_path / "rx_dsps").empty()) _tree->access(mb_path / "rx_subdev_spec").set(_rx_subdev_spec); if (!_tree->list(mb_path / "tx_dsps").empty()) _tree->access(mb_path / "tx_subdev_spec").set(_tx_subdev_spec); _tree->create(mb_path / "link_max_rate").set(USRP1_MAX_RATE_USB2); } usrp1_impl::~usrp1_impl(void) { UHD_SAFE_CALL(this->enable_rx(false); this->enable_tx(false);) _soft_time_ctrl->stop(); // stops cmd task before proceeding _io_impl.reset(); // stops vandal before other stuff gets deconstructed } /*! * Capabilities Register * * 3 2 1 0 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------------------------------------------+-+-----+-+-----+ * | Reserved |T|DUCs |R|DDCs | * +-----------------------------------------------+-+-----+-+-----+ */ size_t usrp1_impl::get_num_ddcs(void) { uint32_t regval = _iface->peek32(FR_RB_CAPS); return (regval >> 0) & 0x0007; } size_t usrp1_impl::get_num_ducs(void) { uint32_t regval = _iface->peek32(FR_RB_CAPS); return (regval >> 4) & 0x0007; } bool usrp1_impl::has_rx_halfband(void) { uint32_t regval = _iface->peek32(FR_RB_CAPS); return (regval >> 3) & 0x0001; } bool usrp1_impl::has_tx_halfband(void) { uint32_t regval = _iface->peek32(FR_RB_CAPS); return (regval >> 7) & 0x0001; } /*********************************************************************** * Properties callback methods below **********************************************************************/ void usrp1_impl::set_db_eeprom(const std::string& db, const std::string& type, const uhd::usrp::dboard_eeprom_t& db_eeprom) { if (type == "rx") db_eeprom.store(*_fx2_ctrl, (db == "A") ? (I2C_ADDR_RX_A) : (I2C_ADDR_RX_B)); if (type == "tx") db_eeprom.store(*_fx2_ctrl, (db == "A") ? (I2C_ADDR_TX_A) : (I2C_ADDR_TX_B)); if (type == "gdb") db_eeprom.store( *_fx2_ctrl, (db == "A") ? (I2C_ADDR_TX_A ^ 5) : (I2C_ADDR_TX_B ^ 5)); } double usrp1_impl::update_rx_codec_gain(const std::string& db, const double gain) { // set gain on both I and Q, readback on one // TODO in the future, gains should have individual control _dbc[db].codec->set_rx_pga_gain(gain, 'A'); _dbc[db].codec->set_rx_pga_gain(gain, 'B'); return _dbc[db].codec->get_rx_pga_gain('A'); } uhd::meta_range_t usrp1_impl::get_rx_dsp_freq_range(void) { return meta_range_t(-_master_clock_rate / 2, +_master_clock_rate / 2); } uhd::meta_range_t usrp1_impl::get_tx_dsp_freq_range(void) { // magic scalar comes from codec control: return meta_range_t(-_master_clock_rate * 0.6875, +_master_clock_rate * 0.6875); } void usrp1_impl::set_enb_rx_dc_offset(const std::string& db, const bool enb) { const size_t shift = (db == "A") ? 0 : 2; _rx_dc_offset_shadow &= ~(0x3 << shift); // clear bits _rx_dc_offset_shadow |= ((enb) ? 0x3 : 0x0) << shift; _iface->poke32(FR_DC_OFFSET_CL_EN, _rx_dc_offset_shadow & 0xf); } std::complex usrp1_impl::set_rx_dc_offset( const std::string& db, const std::complex& offset) { const int32_t i_off = boost::math::iround(offset.real() * (1ul << 31)); const int32_t q_off = boost::math::iround(offset.imag() * (1ul << 31)); if (db == "A") { _iface->poke32(FR_ADC_OFFSET_0, i_off); _iface->poke32(FR_ADC_OFFSET_1, q_off); } if (db == "B") { _iface->poke32(FR_ADC_OFFSET_2, i_off); _iface->poke32(FR_ADC_OFFSET_3, q_off); } return std::complex(double(i_off) * (1ul << 31), double(q_off) * (1ul << 31)); } void usrp1_impl::set_reg(const std::pair& reg) { _iface->poke32(reg.first, reg.second); }