// // Copyright 2010-2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp1_iface.hpp" #include "usrp1_impl.hpp" #include "fpga_regs_common.h" #include "usrp_spi_defs.h" #include "fpga_regs_standard.h" #include "clock_ctrl.hpp" #include "codec_ctrl.hpp" #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; static const dboard_id_t tvrx_id(0x0040); class usrp1_dboard_iface : public dboard_iface { public: usrp1_dboard_iface(usrp1_iface::sptr iface, usrp1_clock_ctrl::sptr clock, usrp1_codec_ctrl::sptr codec, usrp1_impl::dboard_slot_t dboard_slot, const dboard_id_t &rx_dboard_id ): _dboard_slot(dboard_slot), _rx_dboard_id(rx_dboard_id) { _iface = iface; _clock = clock; _codec = codec; //init the clock rate shadows this->set_clock_rate(UNIT_RX, this->get_clock_rates(UNIT_RX).front()); this->set_clock_rate(UNIT_TX, this->get_clock_rates(UNIT_TX).front()); //yes this is evil but it's necessary for TVRX to work on USRP1 if(_rx_dboard_id == tvrx_id) _codec->bypass_adc_buffers(false); //else _codec->bypass_adc_buffers(false); //don't think this is necessary } ~usrp1_dboard_iface() { /* NOP */ } special_props_t get_special_props() { special_props_t props; props.soft_clock_divider = true; props.mangle_i2c_addrs = (_dboard_slot == usrp1_impl::DBOARD_SLOT_B); return props; } void write_aux_dac(unit_t, aux_dac_t, double); double read_aux_adc(unit_t, aux_adc_t); void _set_pin_ctrl(unit_t, boost::uint16_t); void _set_atr_reg(unit_t, atr_reg_t, boost::uint16_t); void _set_gpio_ddr(unit_t, boost::uint16_t); void _set_gpio_out(unit_t, boost::uint16_t); void set_gpio_debug(unit_t, int); boost::uint16_t read_gpio(unit_t); void write_i2c(boost::uint8_t, const byte_vector_t &); byte_vector_t read_i2c(boost::uint8_t, size_t); void write_spi(unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits); boost::uint32_t read_write_spi(unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits); void set_clock_rate(unit_t, double); std::vector get_clock_rates(unit_t); double get_clock_rate(unit_t); void set_clock_enabled(unit_t, bool); double get_codec_rate(unit_t); private: usrp1_iface::sptr _iface; usrp1_clock_ctrl::sptr _clock; usrp1_codec_ctrl::sptr _codec; uhd::dict _clock_rates; const usrp1_impl::dboard_slot_t _dboard_slot; const dboard_id_t &_rx_dboard_id; }; /*********************************************************************** * Make Function **********************************************************************/ dboard_iface::sptr usrp1_impl::make_dboard_iface(usrp1_iface::sptr iface, usrp1_clock_ctrl::sptr clock, usrp1_codec_ctrl::sptr codec, dboard_slot_t dboard_slot, const dboard_id_t &rx_dboard_id ){ return dboard_iface::sptr(new usrp1_dboard_iface( iface, clock, codec, dboard_slot, rx_dboard_id )); } /*********************************************************************** * Clock Rates **********************************************************************/ static const dboard_id_t dbsrx_classic_id(0x0002); /* * Daughterboard reference clock register * * Bit 7 - 1 turns on refclk, 0 allows IO use * Bits 6:0 - Divider value */ void usrp1_dboard_iface::set_clock_rate(unit_t unit, double rate) { assert_has(this->get_clock_rates(unit), rate, "dboard clock rate"); _clock_rates[unit] = rate; if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id){ size_t divider = size_t(_clock->get_master_clock_freq()/rate); switch(_dboard_slot){ case usrp1_impl::DBOARD_SLOT_A: _iface->poke32(FR_RX_A_REFCLK, (divider & 0x7f) | 0x80); break; case usrp1_impl::DBOARD_SLOT_B: _iface->poke32(FR_RX_B_REFCLK, (divider & 0x7f) | 0x80); break; } } } std::vector usrp1_dboard_iface::get_clock_rates(unit_t unit) { std::vector rates; if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id){ for (size_t div = 1; div <= 127; div++) rates.push_back(_clock->get_master_clock_freq() / div); } else{ rates.push_back(_clock->get_master_clock_freq()); } return rates; } double usrp1_dboard_iface::get_clock_rate(unit_t unit) { return _clock_rates[unit]; } void usrp1_dboard_iface::set_clock_enabled(unit_t, bool) { //TODO we can only enable for special case anyway... } double usrp1_dboard_iface::get_codec_rate(unit_t){ return _clock->get_master_clock_freq(); } /*********************************************************************** * GPIO **********************************************************************/ void usrp1_dboard_iface::_set_pin_ctrl(unit_t unit, boost::uint16_t value) { switch(unit) { case UNIT_RX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_MASK_1, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_MASK_3, value); break; case UNIT_TX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_MASK_0, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_MASK_2, value); break; } } void usrp1_dboard_iface::_set_gpio_ddr(unit_t unit, boost::uint16_t value) { switch(unit) { case UNIT_RX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_OE_1, 0xffff0000 | value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_OE_3, 0xffff0000 | value); break; case UNIT_TX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_OE_0, 0xffff0000 | value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_OE_2, 0xffff0000 | value); break; } } void usrp1_dboard_iface::_set_gpio_out(unit_t unit, boost::uint16_t value) { switch(unit) { case UNIT_RX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_IO_1, 0xffff0000 | value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_IO_3, 0xffff0000 | value); break; case UNIT_TX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_IO_0, 0xffff0000 | value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_IO_2, 0xffff0000 | value); break; } } void usrp1_dboard_iface::set_gpio_debug(unit_t, int) { /* NOP */ } boost::uint16_t usrp1_dboard_iface::read_gpio(unit_t unit) { boost::uint32_t out_value; if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) out_value = _iface->peek32(1); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) out_value = _iface->peek32(2); else UHD_THROW_INVALID_CODE_PATH(); switch(unit) { case UNIT_RX: return (boost::uint16_t)((out_value >> 16) & 0x0000ffff); case UNIT_TX: return (boost::uint16_t)((out_value >> 0) & 0x0000ffff); } UHD_ASSERT_THROW(false); } void usrp1_dboard_iface::_set_atr_reg(unit_t unit, atr_reg_t atr, boost::uint16_t value) { // Ignore unsupported states if ((atr == ATR_REG_IDLE) || (atr == ATR_REG_TX_ONLY)) return; if(atr == ATR_REG_RX_ONLY) { switch(unit) { case UNIT_RX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_RXVAL_1, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_RXVAL_3, value); break; case UNIT_TX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_RXVAL_0, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_RXVAL_2, value); break; } } else if (atr == ATR_REG_FULL_DUPLEX) { switch(unit) { case UNIT_RX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_TXVAL_1, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_TXVAL_3, value); break; case UNIT_TX: if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A) _iface->poke32(FR_ATR_TXVAL_0, value); else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B) _iface->poke32(FR_ATR_TXVAL_2, value); break; } } } /*********************************************************************** * SPI **********************************************************************/ /*! * Static function to convert a unit type to a spi slave device number. * \param unit the dboard interface unit type enum * \param slot the side (A or B) the dboard is attached * \return the slave device number */ static boost::uint32_t unit_to_otw_spi_dev(dboard_iface::unit_t unit, usrp1_impl::dboard_slot_t slot) { switch(unit) { case dboard_iface::UNIT_TX: if (slot == usrp1_impl::DBOARD_SLOT_A) return SPI_ENABLE_TX_A; else if (slot == usrp1_impl::DBOARD_SLOT_B) return SPI_ENABLE_TX_B; else break; case dboard_iface::UNIT_RX: if (slot == usrp1_impl::DBOARD_SLOT_A) return SPI_ENABLE_RX_A; else if (slot == usrp1_impl::DBOARD_SLOT_B) return SPI_ENABLE_RX_B; else break; } UHD_THROW_INVALID_CODE_PATH(); } void usrp1_dboard_iface::write_spi(unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits) { _iface->write_spi(unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits); } boost::uint32_t usrp1_dboard_iface::read_write_spi(unit_t unit, const spi_config_t &config, boost::uint32_t data, size_t num_bits) { return _iface->read_spi(unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits); } /*********************************************************************** * I2C **********************************************************************/ void usrp1_dboard_iface::write_i2c(boost::uint8_t addr, const byte_vector_t &bytes) { return _iface->write_i2c(addr, bytes); } byte_vector_t usrp1_dboard_iface::read_i2c(boost::uint8_t addr, size_t num_bytes) { return _iface->read_i2c(addr, num_bytes); } /*********************************************************************** * Aux DAX/ADC **********************************************************************/ void usrp1_dboard_iface::write_aux_dac(dboard_iface::unit_t, aux_dac_t which, double value) { //same aux dacs for each unit static const uhd::dict which_to_aux_dac = map_list_of (AUX_DAC_A, usrp1_codec_ctrl::AUX_DAC_A) (AUX_DAC_B, usrp1_codec_ctrl::AUX_DAC_B) (AUX_DAC_C, usrp1_codec_ctrl::AUX_DAC_C) (AUX_DAC_D, usrp1_codec_ctrl::AUX_DAC_D); _codec->write_aux_dac(which_to_aux_dac[which], value); } double usrp1_dboard_iface::read_aux_adc(dboard_iface::unit_t unit, aux_adc_t which) { static const uhd::dict > unit_to_which_to_aux_adc = map_list_of(UNIT_RX, map_list_of (AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A1) (AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B1)) (UNIT_TX, map_list_of (AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A2) (AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B2)); return _codec->read_aux_adc(unit_to_which_to_aux_adc[unit][which]); }