// // Copyright 2010-2016 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include <uhd/property_tree.hpp> #include <uhd/types/eeprom.hpp> #include <uhd/usrp/multi_usrp.hpp> #include <uhd/usrp/gpio_defs.hpp> #include <uhd/exception.hpp> #include <uhd/utils/log.hpp> #include <uhd/utils/math.hpp> #include <uhd/utils/gain_group.hpp> #include <uhd/usrp/dboard_id.hpp> #include <uhd/usrp/mboard_eeprom.hpp> #include <uhd/usrp/dboard_eeprom.hpp> #include <uhd/convert.hpp> #include <uhd/utils/soft_register.hpp> #include <uhdlib/usrp/gpio_defs.hpp> #include <uhdlib/rfnoc/legacy_compat.hpp> #include <boost/assign/list_of.hpp> #include <boost/format.hpp> #include <boost/algorithm/string.hpp> #include <algorithm> #include <cmath> #include <bitset> #include <chrono> #include <thread> using namespace uhd; using namespace uhd::usrp; const size_t multi_usrp::ALL_MBOARDS = size_t(~0); const size_t multi_usrp::ALL_CHANS = size_t(~0); const std::string multi_usrp::ALL_GAINS = ""; const std::string multi_usrp::ALL_LOS = "all"; UHD_INLINE std::string string_vector_to_string(std::vector<std::string> values, std::string delimiter = std::string(" ")) { std::string out = ""; for (std::vector<std::string>::iterator iter = values.begin(); iter != values.end(); iter++) { out += (iter != values.begin() ? delimiter : "") + *iter; } return out; } #define THROW_GAIN_NAME_ERROR(name,chan,dir) throw uhd::exception::runtime_error( \ (boost::format("%s: gain \"%s\" not found for channel %d.\nAvailable gains: %s\n") % \ __FUNCTION__ % name % chan % string_vector_to_string(get_##dir##_gain_names(chan))).str()); /*********************************************************************** * Helper methods **********************************************************************/ static void do_samp_rate_warning_message( double target_rate, double actual_rate, const std::string &xx ){ static const double max_allowed_error = 1.0; //Sps if (std::abs(target_rate - actual_rate) > max_allowed_error){ UHD_LOGGER_WARNING("MULTI_USRP") << boost::format( "The hardware does not support the requested %s sample rate:\n" "Target sample rate: %f MSps\n" "Actual sample rate: %f MSps\n" ) % xx % (target_rate/1e6) % (actual_rate/1e6); } } /*static void do_tune_freq_results_message( const tune_request_t &tune_req, const tune_result_t &tune_result, double actual_freq, const std::string &xx ){ const double target_freq = tune_req.target_freq; const double clipped_target_freq = tune_result.clipped_rf_freq; const double target_rf_freq = tune_result.target_rf_freq; const double actual_rf_freq = tune_result.actual_rf_freq; const double target_dsp_freq = tune_result.target_dsp_freq; const double actual_dsp_freq = tune_result.actual_dsp_freq; if (tune_req.rf_freq_policy == tune_request_t::POLICY_MANUAL) return; if (tune_req.dsp_freq_policy == tune_request_t::POLICY_MANUAL) return; bool requested_freq_success = uhd::math::frequencies_are_equal(target_freq, clipped_target_freq); bool target_freq_success = uhd::math::frequencies_are_equal(clipped_target_freq, actual_freq); bool rf_lo_tune_success = uhd::math::frequencies_are_equal(target_rf_freq, actual_rf_freq); bool dsp_tune_success = uhd::math::frequencies_are_equal(target_dsp_freq, actual_dsp_freq); if(requested_freq_success and target_freq_success and rf_lo_tune_success and dsp_tune_success) { UHD_LOGGER_INFO("MULTI_USRP") << boost::format( "Successfully tuned to %f MHz\n\n") % (actual_freq / 1e6); } else { boost::format base_message ("Tune Request: %f MHz\n"); base_message % (target_freq / 1e6); std::string results_string = base_message.str(); if(requested_freq_success and (not rf_lo_tune_success)) { boost::format rf_lo_message( " The RF LO does not support the requested frequency:\n" " Requested LO Frequency: %f MHz\n" " RF LO Result: %f MHz\n" " Attempted to use the DSP to reach the requested frequency:\n" " Desired DSP Frequency: %f MHz\n" " DSP Result: %f MHz\n" " Successfully tuned to %f MHz\n\n"); rf_lo_message % (target_rf_freq / 1e6) % (actual_rf_freq / 1e6) % (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6) % (actual_freq / 1e6); results_string += rf_lo_message.str(); UHD_LOGGER_INFO("MULTI_USRP") << results_string; return; } if(not requested_freq_success) { boost::format failure_message( " The requested %s frequency is outside of the system range, and has been clipped:\n" " Target Frequency: %f MHz\n" " Clipped Target Frequency: %f MHz\n"); failure_message % xx % (target_freq / 1e6) % (clipped_target_freq / 1e6); results_string += failure_message.str(); } if(not rf_lo_tune_success) { boost::format rf_lo_message( " The RF LO does not support the requested frequency:\n" " Requested LO Frequency: %f MHz\n" " RF LO Result: %f MHz\n" " Attempted to use the DSP to reach the requested frequency:\n" " Desired DSP Frequency: %f MHz\n" " DSP Result: %f MHz\n"); rf_lo_message % (target_rf_freq / 1e6) % (actual_rf_freq / 1e6) % (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6); results_string += rf_lo_message.str(); } else if(not dsp_tune_success) { boost::format dsp_message( " The DSP does not support the requested frequency:\n" " Requested DSP Frequency: %f MHz\n" " DSP Result: %f MHz\n"); dsp_message % (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6); results_string += dsp_message.str(); } if(target_freq_success) { boost::format success_message( " Successfully tuned to %f MHz\n\n"); success_message % (actual_freq / 1e6); results_string += success_message.str(); } else { boost::format failure_message( " Failed to tune to target frequency\n" " Target Frequency: %f MHz\n" " Actual Frequency: %f MHz\n\n"); failure_message % (clipped_target_freq / 1e6) % (actual_freq / 1e6); results_string += failure_message.str(); } UHD_LOGGER_WARNING("MULTI_USRP") << results_string ; } }*/ /*! The CORDIC can be used to shift the baseband below / past the tunable * limits of the actual RF front-end. The baseband filter, located on the * daughterboard, however, limits the useful instantaneous bandwidth. We * allow the user to tune to the edge of the filter, where the roll-off * begins. This prevents the user from tuning past the point where less * than half of the spectrum would be useful. */ static meta_range_t make_overall_tune_range( const meta_range_t &fe_range, const meta_range_t &dsp_range, const double bw ){ meta_range_t range; for(const range_t &sub_range: fe_range){ range.push_back(range_t( sub_range.start() + std::max(dsp_range.start(), -bw/2), sub_range.stop() + std::min(dsp_range.stop(), bw/2), dsp_range.step() )); } return range; } /*********************************************************************** * Gain helper functions **********************************************************************/ static double get_gain_value(property_tree::sptr subtree){ return subtree->access<double>("value").get(); } static void set_gain_value(property_tree::sptr subtree, const double gain){ subtree->access<double>("value").set(gain); } static meta_range_t get_gain_range(property_tree::sptr subtree){ return subtree->access<meta_range_t>("range").get(); } static gain_fcns_t make_gain_fcns_from_subtree(property_tree::sptr subtree){ gain_fcns_t gain_fcns; gain_fcns.get_range = boost::bind(&get_gain_range, subtree); gain_fcns.get_value = boost::bind(&get_gain_value, subtree); gain_fcns.set_value = boost::bind(&set_gain_value, subtree, _1); return gain_fcns; } /*********************************************************************** * Tune Helper Functions **********************************************************************/ static const double RX_SIGN = +1.0; static const double TX_SIGN = -1.0; static tune_result_t tune_xx_subdev_and_dsp( const double xx_sign, property_tree::sptr dsp_subtree, property_tree::sptr rf_fe_subtree, const tune_request_t &tune_request ){ //------------------------------------------------------------------ //-- calculate the tunable frequency ranges of the system //------------------------------------------------------------------ freq_range_t tune_range = make_overall_tune_range( rf_fe_subtree->access<meta_range_t>("freq/range").get(), dsp_subtree->access<meta_range_t>("freq/range").get(), rf_fe_subtree->access<double>("bandwidth/value").get() ); freq_range_t dsp_range = dsp_subtree->access<meta_range_t>("freq/range").get(); freq_range_t rf_range = rf_fe_subtree->access<meta_range_t>("freq/range").get(); double clipped_requested_freq = tune_range.clip(tune_request.target_freq); //------------------------------------------------------------------ //-- If the RF FE requires an LO offset, build it into the tune request //------------------------------------------------------------------ /*! The automatically calculated LO offset is only used if the * 'use_lo_offset' field in the daughterboard property tree is set to TRUE, * and the tune policy is set to AUTO. To use an LO offset normally, the * user should specify the MANUAL tune policy and lo_offset as part of the * tune_request. This lo_offset is based on the requirements of the FE, and * does not reflect a user-requested lo_offset, which is handled later. */ double lo_offset = 0.0; if (rf_fe_subtree->exists("use_lo_offset") and rf_fe_subtree->access<bool>("use_lo_offset").get()){ // If the frontend has lo_offset value and range properties, trust it // for lo_offset if (rf_fe_subtree->exists("lo_offset/value")) { lo_offset = rf_fe_subtree->access<double>("lo_offset/value").get(); } //If the local oscillator will be in the passband, use an offset. //But constrain the LO offset by the width of the filter bandwidth. const double rate = dsp_subtree->access<double>("rate/value").get(); const double bw = rf_fe_subtree->access<double>("bandwidth/value").get(); if (bw > rate) lo_offset = std::min((bw - rate)/2, rate/2); } //------------------------------------------------------------------ //-- poke the tune request args into the dboard //------------------------------------------------------------------ if (rf_fe_subtree->exists("tune_args")) { rf_fe_subtree->access<device_addr_t>("tune_args").set(tune_request.args); } //------------------------------------------------------------------ //-- set the RF frequency depending upon the policy //------------------------------------------------------------------ double target_rf_freq = 0.0; switch (tune_request.rf_freq_policy){ case tune_request_t::POLICY_AUTO: target_rf_freq = clipped_requested_freq + lo_offset; break; case tune_request_t::POLICY_MANUAL: // If the rf_fe understands lo_offset settings, infer the desired // lo_offset and set it. Side effect: In TVRX2 for example, after // setting the lo_offset (if_freq) with a POLICY_MANUAL, there is no // way for the user to automatically get back to default if_freq // without deconstruct/reconstruct the rf_fe objects. if (rf_fe_subtree->exists("lo_offset/value")) { rf_fe_subtree->access<double>("lo_offset/value") .set(tune_request.rf_freq - tune_request.target_freq); } target_rf_freq = rf_range.clip(tune_request.rf_freq); break; case tune_request_t::POLICY_NONE: break; //does not set } //------------------------------------------------------------------ //-- Tune the RF frontend //------------------------------------------------------------------ if (tune_request.rf_freq_policy != tune_request_t::POLICY_NONE) { rf_fe_subtree->access<double>("freq/value").set(target_rf_freq); } const double actual_rf_freq = rf_fe_subtree->access<double>("freq/value").get(); //------------------------------------------------------------------ //-- Set the DSP frequency depending upon the DSP frequency policy. //------------------------------------------------------------------ double target_dsp_freq = 0.0; switch (tune_request.dsp_freq_policy) { case tune_request_t::POLICY_AUTO: /* If we are using the AUTO tuning policy, then we prevent the * CORDIC from spinning us outside of the range of the baseband * filter, regardless of what the user requested. This could happen * if the user requested a center frequency so far outside of the * tunable range of the FE that the CORDIC would spin outside the * filtered baseband. */ target_dsp_freq = actual_rf_freq - clipped_requested_freq; //invert the sign on the dsp freq for transmit (spinning up vs down) target_dsp_freq *= xx_sign; break; case tune_request_t::POLICY_MANUAL: /* If the user has specified a manual tune policy, we will allow * tuning outside of the baseband filter, but will still clip the * target DSP frequency to within the bounds of the CORDIC to * prevent undefined behavior (likely an overflow). */ target_dsp_freq = dsp_range.clip(tune_request.dsp_freq); break; case tune_request_t::POLICY_NONE: break; //does not set } //------------------------------------------------------------------ //-- Tune the DSP //------------------------------------------------------------------ if (tune_request.dsp_freq_policy != tune_request_t::POLICY_NONE) { dsp_subtree->access<double>("freq/value").set(target_dsp_freq); } const double actual_dsp_freq = dsp_subtree->access<double>("freq/value").get(); //------------------------------------------------------------------ //-- Load and return the tune result //------------------------------------------------------------------ tune_result_t tune_result; tune_result.clipped_rf_freq = clipped_requested_freq; tune_result.target_rf_freq = target_rf_freq; tune_result.actual_rf_freq = actual_rf_freq; tune_result.target_dsp_freq = target_dsp_freq; tune_result.actual_dsp_freq = actual_dsp_freq; return tune_result; } static double derive_freq_from_xx_subdev_and_dsp( const double xx_sign, property_tree::sptr dsp_subtree, property_tree::sptr rf_fe_subtree ){ //extract actual dsp and IF frequencies const double actual_rf_freq = rf_fe_subtree->access<double>("freq/value").get(); const double actual_dsp_freq = dsp_subtree->access<double>("freq/value").get(); //invert the sign on the dsp freq for transmit return actual_rf_freq - actual_dsp_freq * xx_sign; } /*********************************************************************** * Multi USRP Implementation **********************************************************************/ class multi_usrp_impl : public multi_usrp{ public: multi_usrp_impl(const device_addr_t &addr){ _dev = device::make(addr, device::USRP); _tree = _dev->get_tree(); _is_device3 = bool(boost::dynamic_pointer_cast<uhd::device3>(_dev)); if (is_device3() and not addr.has_key("recover_mb_eeprom")) { _legacy_compat = rfnoc::legacy_compat::make(get_device3(), addr); } } device::sptr get_device(void){ return _dev; } bool is_device3(void) { return _is_device3; } device3::sptr get_device3(void) { if (not is_device3()) { throw uhd::type_error("Cannot call get_device3() on a non-generation 3 device."); } return boost::dynamic_pointer_cast<uhd::device3>(_dev); } dict<std::string, std::string> get_usrp_rx_info(size_t chan){ mboard_chan_pair mcp = rx_chan_to_mcp(chan); dict<std::string, std::string> usrp_info; const auto mb_eeprom = _tree->access<mboard_eeprom_t>(mb_root(mcp.mboard) / "eeprom").get(); usrp_info["mboard_id"] = _tree->access<std::string>(mb_root(mcp.mboard) / "name").get(); usrp_info["mboard_name"] = mb_eeprom.get("name", "n/a"); usrp_info["mboard_serial"] = mb_eeprom["serial"]; usrp_info["rx_subdev_name"] = _tree->access<std::string>(rx_rf_fe_root(chan) / "name").get(); usrp_info["rx_subdev_spec"] = _tree->access<subdev_spec_t>(mb_root(mcp.mboard) / "rx_subdev_spec").get().to_string(); usrp_info["rx_antenna"] = _tree->access<std::string>(rx_rf_fe_root(chan) / "antenna" / "value").get(); if (_tree->exists(rx_rf_fe_root(chan).branch_path().branch_path() / "rx_eeprom")) { const auto db_eeprom = _tree->access<dboard_eeprom_t>( rx_rf_fe_root(chan).branch_path().branch_path() / "rx_eeprom" ).get(); usrp_info["rx_serial"] = db_eeprom.serial; usrp_info["rx_id"] = db_eeprom.id.to_pp_string(); } const auto rfnoc_path = mb_root(mcp.mboard) / "xbar"; if (_tree->exists(rfnoc_path)) { const auto spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan); const auto radio_index = get_radio_index(spec.db_name); const auto radio_path = rfnoc_path / str(boost::format("Radio_%d") % radio_index); const auto eeprom_path = radio_path / "eeprom"; if (_tree->exists(eeprom_path)) { const auto db_eeprom = _tree->access<eeprom_map_t>(eeprom_path).get(); usrp_info["rx_serial"] = db_eeprom.count("serial") ? std::string(db_eeprom.at("serial").begin(), db_eeprom.at("serial").end()) : "n/a" ; usrp_info["rx_id"] = db_eeprom.count("pid") ? std::string(db_eeprom.at("pid").begin(), db_eeprom.at("pid").end()) : "n/a" ; } } return usrp_info; } dict<std::string, std::string> get_usrp_tx_info(size_t chan){ mboard_chan_pair mcp = tx_chan_to_mcp(chan); dict<std::string, std::string> usrp_info; const auto mb_eeprom = _tree->access<mboard_eeprom_t>(mb_root(mcp.mboard) / "eeprom").get(); usrp_info["mboard_id"] = _tree->access<std::string>(mb_root(mcp.mboard) / "name").get(); usrp_info["mboard_name"] = mb_eeprom.get("name", "n/a"); usrp_info["mboard_serial"] = mb_eeprom["serial"]; usrp_info["tx_subdev_name"] = _tree->access<std::string>(tx_rf_fe_root(chan) / "name").get(); usrp_info["tx_subdev_spec"] = _tree->access<subdev_spec_t>(mb_root(mcp.mboard) / "tx_subdev_spec").get().to_string(); usrp_info["tx_antenna"] = _tree->access<std::string>(tx_rf_fe_root(chan) / "antenna" / "value").get(); if (_tree->exists(tx_rf_fe_root(chan).branch_path().branch_path() / "tx_eeprom")) { const auto db_eeprom = _tree->access<dboard_eeprom_t>( tx_rf_fe_root(chan).branch_path().branch_path() / "tx_eeprom" ).get(); usrp_info["tx_serial"] = db_eeprom.serial; usrp_info["tx_id"] = db_eeprom.id.to_pp_string(); } const auto rfnoc_path = mb_root(mcp.mboard) / "xbar"; if (_tree->exists(rfnoc_path)) { const auto spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan); const auto radio_index = get_radio_index(spec.db_name); const auto radio_path = rfnoc_path / str(boost::format("Radio_%d")%radio_index); const auto path = radio_path / "eeprom"; if(_tree->exists(path)) { const auto db_eeprom = _tree->access<eeprom_map_t>(path).get(); usrp_info["tx_serial"] = db_eeprom.count("serial") ? std::string(db_eeprom.at("serial").begin(), db_eeprom.at("serial").end()) : "n/a" ; usrp_info["tx_id"] = db_eeprom.count("pid") ? std::string(db_eeprom.at("pid").begin(), db_eeprom.at("pid").end()) : "n/a" ; } } return usrp_info; } /******************************************************************* * Mboard methods ******************************************************************/ void set_master_clock_rate(double rate, size_t mboard){ if (mboard != ALL_MBOARDS){ if (_tree->exists(mb_root(mboard) / "auto_tick_rate") and _tree->access<bool>(mb_root(mboard) / "auto_tick_rate").get()) { _tree->access<bool>(mb_root(mboard) / "auto_tick_rate").set(false); UHD_LOGGER_INFO("MULTI_USRP") << "Setting master clock rate selection to 'manual'."; } _tree->access<double>(mb_root(mboard) / "tick_rate").set(rate); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_master_clock_rate(rate, m); } } double get_master_clock_rate(size_t mboard){ return _tree->access<double>(mb_root(mboard) / "tick_rate").get(); } meta_range_t get_master_clock_rate_range(const size_t mboard) { if (_tree->exists(mb_root(mboard) / "tick_rate/range")) { return _tree->access<meta_range_t>( mb_root(mboard) / "tick_rate/range" ).get(); } // The USRP may not have a range defined, in which case we create a // fake range with a single value: const double tick_rate = get_master_clock_rate(mboard); return meta_range_t( tick_rate, tick_rate, 0 ); } std::string get_pp_string(void){ std::string buff = str(boost::format( "%s USRP:\n" " Device: %s\n" ) % ((get_num_mboards() > 1)? "Multi" : "Single") % (_tree->access<std::string>("/name").get()) ); for (size_t m = 0; m < get_num_mboards(); m++){ buff += str(boost::format( " Mboard %d: %s\n" ) % m % (_tree->access<std::string>(mb_root(m) / "name").get()) ); } //----------- rx side of life ---------------------------------- for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){ for (; chan < (m + 1)*get_rx_subdev_spec(m).size(); chan++){ buff += str(boost::format( " RX Channel: %u\n" " RX DSP: %s\n" " RX Dboard: %s\n" " RX Subdev: %s\n" ) % chan % rx_dsp_root(chan).leaf() % rx_rf_fe_root(chan).branch_path().branch_path().leaf() % (_tree->access<std::string>(rx_rf_fe_root(chan) / "name").get()) ); } } //----------- tx side of life ---------------------------------- for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){ for (; chan < (m + 1)*get_tx_subdev_spec(m).size(); chan++){ buff += str(boost::format( " TX Channel: %u\n" " TX DSP: %s\n" " TX Dboard: %s\n" " TX Subdev: %s\n" ) % chan % tx_dsp_root(chan).leaf() % tx_rf_fe_root(chan).branch_path().branch_path().leaf() % (_tree->access<std::string>(tx_rf_fe_root(chan) / "name").get()) ); } } return buff; } std::string get_mboard_name(size_t mboard){ return _tree->access<std::string>(mb_root(mboard) / "name").get(); } time_spec_t get_time_now(size_t mboard = 0){ return _tree->access<time_spec_t>(mb_root(mboard) / "time/now").get(); } time_spec_t get_time_last_pps(size_t mboard = 0){ return _tree->access<time_spec_t>(mb_root(mboard) / "time/pps").get(); } void set_time_now(const time_spec_t &time_spec, size_t mboard){ if (mboard != ALL_MBOARDS){ _tree->access<time_spec_t>(mb_root(mboard) / "time/now").set(time_spec); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_time_now(time_spec, m); } } void set_time_next_pps(const time_spec_t &time_spec, size_t mboard){ if (mboard != ALL_MBOARDS){ _tree->access<time_spec_t>(mb_root(mboard) / "time/pps").set(time_spec); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_time_next_pps(time_spec, m); } } void set_time_unknown_pps(const time_spec_t &time_spec){ UHD_LOGGER_INFO("MULTI_USRP") << " 1) catch time transition at pps edge"; auto end_time = std::chrono::steady_clock::now() + std::chrono::milliseconds(1100); time_spec_t time_start_last_pps = get_time_last_pps(); while (time_start_last_pps == get_time_last_pps()) { if (std::chrono::steady_clock::now() > end_time) { throw uhd::runtime_error( "Board 0 may not be getting a PPS signal!\n" "No PPS detected within the time interval.\n" "See the application notes for your device.\n" ); } std::this_thread::sleep_for(std::chrono::milliseconds(1)); } UHD_LOGGER_INFO("MULTI_USRP") << " 2) set times next pps (synchronously)"; set_time_next_pps(time_spec, ALL_MBOARDS); std::this_thread::sleep_for(std::chrono::seconds(1)); //verify that the time registers are read to be within a few RTT for (size_t m = 1; m < get_num_mboards(); m++){ time_spec_t time_0 = this->get_time_now(0); time_spec_t time_i = this->get_time_now(m); if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)){ //10 ms: greater than RTT but not too big UHD_LOGGER_WARNING("MULTI_USRP") << boost::format( "Detected time deviation between board %d and board 0.\n" "Board 0 time is %f seconds.\n" "Board %d time is %f seconds.\n" ) % m % time_0.get_real_secs() % m % time_i.get_real_secs(); } } } bool get_time_synchronized(void){ for (size_t m = 1; m < get_num_mboards(); m++){ time_spec_t time_0 = this->get_time_now(0); time_spec_t time_i = this->get_time_now(m); if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)) return false; } return true; } void set_command_time(const time_spec_t &time_spec, size_t mboard){ if (mboard != ALL_MBOARDS){ if (not _tree->exists(mb_root(mboard) / "time/cmd")){ throw uhd::not_implemented_error("timed command feature not implemented on this hardware"); } _tree->access<time_spec_t>(mb_root(mboard) / "time/cmd").set(time_spec); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_command_time(time_spec, m); } } void clear_command_time(size_t mboard){ if (mboard != ALL_MBOARDS){ _tree->access<time_spec_t>(mb_root(mboard) / "time/cmd").set(time_spec_t(0.0)); return; } for (size_t m = 0; m < get_num_mboards(); m++){ clear_command_time(m); } } void issue_stream_cmd(const stream_cmd_t &stream_cmd, size_t chan){ if (chan != ALL_CHANS){ if (is_device3()) { mboard_chan_pair mcp = rx_chan_to_mcp(chan); _legacy_compat->issue_stream_cmd(stream_cmd, mcp.mboard, mcp.chan); } else { _tree->access<stream_cmd_t>(rx_dsp_root(chan) / "stream_cmd").set(stream_cmd); } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ issue_stream_cmd(stream_cmd, c); } } void set_clock_config(const clock_config_t &clock_config, size_t mboard){ //set the reference source... std::string clock_source; switch(clock_config.ref_source){ case clock_config_t::REF_INT: clock_source = "internal"; break; case clock_config_t::REF_SMA: clock_source = "external"; break; case clock_config_t::REF_MIMO: clock_source = "mimo"; break; default: clock_source = "unknown"; } this->set_clock_source(clock_source, mboard); //set the time source std::string time_source; switch(clock_config.pps_source){ case clock_config_t::PPS_INT: time_source = "internal"; break; case clock_config_t::PPS_SMA: time_source = "external"; break; case clock_config_t::PPS_MIMO: time_source = "mimo"; break; default: time_source = "unknown"; } if (time_source == "external" and clock_config.pps_polarity == clock_config_t::PPS_NEG) time_source = "_external_"; this->set_time_source(time_source, mboard); } void set_time_source(const std::string &source, const size_t mboard){ if (mboard != ALL_MBOARDS){ const auto time_source_path = mb_root(mboard) / "time_source/value"; const auto sync_source_path = mb_root(mboard) / "sync_source/value"; if (_tree->exists(time_source_path)) { _tree->access<std::string>(time_source_path).set(source); } else if (_tree->exists(sync_source_path)) { auto sync_source = _tree->access<device_addr_t>(sync_source_path).get(); sync_source["time_source"] = source; _tree->access<device_addr_t>(sync_source_path).set(sync_source); } else { throw uhd::runtime_error("Can't set time source on this device."); } return; } for (size_t m = 0; m < get_num_mboards(); m++){ this->set_time_source(source, m); } } std::string get_time_source(const size_t mboard){ const auto time_source_path = mb_root(mboard) / "time_source/value"; if (_tree->exists(time_source_path)) { return _tree->access<std::string>(time_source_path).get(); } else if (_tree->exists(mb_root(mboard) / "sync_source/value")) { auto sync_source = _tree->access<device_addr_t>( mb_root(mboard) / "sync_source" / "value").get(); if (sync_source.has_key("time_source")) { return sync_source.get("time_source"); } } throw uhd::runtime_error("Cannot query time_source on this device!"); } std::vector<std::string> get_time_sources(const size_t mboard){ const auto time_source_path = mb_root(mboard) / "time_source/options"; if (_tree->exists(time_source_path)) { return _tree->access<std::vector<std::string>>(time_source_path) .get(); } else if (_tree->exists(mb_root(mboard) / "sync_source/options")) { const auto sync_sources = get_sync_sources(mboard); std::vector<std::string> time_sources; for (const auto& sync_source : sync_sources) { if (sync_source.has_key("time_source")) { time_sources.push_back(sync_source.get("time_source")); } } } throw uhd::runtime_error("Cannot query time_source on this device!"); } void set_clock_source(const std::string &source, const size_t mboard){ if (mboard != ALL_MBOARDS){ const auto clock_source_path = mb_root(mboard) / "clock_source/value"; const auto sync_source_path = mb_root(mboard) / "sync_source/value"; if (_tree->exists(clock_source_path)) { _tree->access<std::string>(clock_source_path).set(source); } else if (_tree->exists(sync_source_path)) { auto sync_source = _tree->access<device_addr_t>(sync_source_path).get(); sync_source["clock_source"] = source; _tree->access<device_addr_t>(sync_source_path).set(sync_source); } else { throw uhd::runtime_error( "Can't set clock source on this device."); } return; } for (size_t m = 0; m < get_num_mboards(); m++){ this->set_clock_source(source, m); } } std::string get_clock_source(const size_t mboard){ const auto clock_source_path = mb_root(mboard) / "clock_source/value"; if (_tree->exists(clock_source_path)) { return _tree->access<std::string>( mb_root(mboard) / "clock_source" / "value").get(); } else if (_tree->exists(mb_root(mboard) / "sync_source/value")) { auto sync_source = _tree->access<device_addr_t>( mb_root(mboard) / "sync_source" / "value").get(); if (sync_source.has_key("clock_source")) { return sync_source.get("clock_source"); } } throw uhd::runtime_error("Cannot query clock_source on this device!"); } void set_sync_source( const std::string &clock_source, const std::string &time_source, const size_t mboard ) { device_addr_t sync_args; sync_args["clock_source"] = clock_source; sync_args["time_source"] = time_source; set_sync_source(sync_args, mboard); } void set_sync_source( const device_addr_t& sync_source, const size_t mboard ) { if (mboard != ALL_MBOARDS) { const auto sync_source_path = mb_root(mboard) / "sync_source/value"; if (_tree->exists(sync_source_path)) { _tree->access<device_addr_t>(sync_source_path) .set(sync_source); } else if (_tree->exists(mb_root(mboard) / "clock_source/value") and _tree->exists(mb_root(mboard) / "time_source/value") and sync_source.has_key("clock_source") and sync_source.has_key("time_source")) { const std::string clock_source = sync_source["clock_source"]; const std::string time_source = sync_source["time_source"]; set_clock_source(clock_source, mboard); set_time_source(time_source, mboard); } else { throw uhd::runtime_error( "Can't set sync source on this device."); } return; } for (size_t m = 0; m < get_num_mboards(); m++){ this->set_sync_source(sync_source, m); } } device_addr_t get_sync_source(const size_t mboard) { const auto sync_source_path = mb_root(mboard) / "sync_source/value"; if (_tree->exists(sync_source_path)) { return _tree->access<device_addr_t>(sync_source_path).get(); } // If this path is not there, we fall back to the oldschool method and // convert to a new-fangled sync source dictionary const std::string clock_source = get_clock_source(mboard); const std::string time_source = get_time_source(mboard); device_addr_t sync_source; sync_source["clock_source"] = clock_source; sync_source["time_source"] = time_source; return sync_source; } std::vector<device_addr_t> get_sync_sources(const size_t mboard) { const auto sync_source_path = mb_root(mboard) / "sync_source/options"; if (_tree->exists(sync_source_path)) { return _tree->access<std::vector<device_addr_t>>(sync_source_path).get(); } // If this path is not there, we fall back to the oldschool method and // convert to a new-fangled sync source dictionary const auto clock_sources = get_clock_sources(mboard); const auto time_sources = get_time_sources(mboard); std::vector<device_addr_t> sync_sources; for (const auto& clock_source : clock_sources) { for (const auto& time_source : time_sources) { device_addr_t sync_source; sync_source["clock_source"] = clock_source; sync_source["time_source"] = time_source; sync_sources.push_back(sync_source); } } return sync_sources; } std::vector<std::string> get_clock_sources(const size_t mboard){ const auto clock_source_path = mb_root(mboard) / "clock_source/options"; if (_tree->exists(clock_source_path)) { return _tree->access<std::vector<std::string>>(clock_source_path) .get(); } else if (_tree->exists(mb_root(mboard) / "sync_source/options")) { const auto sync_sources = get_sync_sources(mboard); std::vector<std::string> clock_sources; for (const auto& sync_source : sync_sources) { if (sync_source.has_key("clock_source")) { clock_sources.push_back(sync_source.get("clock_source")); } } } throw uhd::runtime_error("Cannot query clock_source on this device!"); } void set_clock_source_out(const bool enb, const size_t mboard) { if (mboard != ALL_MBOARDS) { if (_tree->exists(mb_root(mboard) / "clock_source" / "output")) { _tree->access<bool>(mb_root(mboard) / "clock_source" / "output").set(enb); } else { throw uhd::runtime_error("multi_usrp::set_clock_source_out - not supported on this device"); } return; } for (size_t m = 0; m < get_num_mboards(); m++) { this->set_clock_source_out(enb, m); } } void set_time_source_out(const bool enb, const size_t mboard) { if (mboard != ALL_MBOARDS) { if (_tree->exists(mb_root(mboard) / "time_source" / "output")) { _tree->access<bool>(mb_root(mboard) / "time_source" / "output").set(enb); } else { throw uhd::runtime_error("multi_usrp::set_time_source_out - not supported on this device"); } return; } for (size_t m = 0; m < get_num_mboards(); m++) { this->set_time_source_out(enb, m); } } size_t get_num_mboards(void){ return _tree->list("/mboards").size(); } sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard){ return _tree->access<sensor_value_t>(mb_root(mboard) / "sensors" / name).get(); } std::vector<std::string> get_mboard_sensor_names(size_t mboard){ if (_tree->exists(mb_root(mboard) / "sensors")) { return _tree->list(mb_root(mboard) / "sensors"); } return {}; } void set_user_register(const uint8_t addr, const uint32_t data, size_t mboard){ if (mboard != ALL_MBOARDS){ typedef std::pair<uint8_t, uint32_t> user_reg_t; _tree->access<user_reg_t>(mb_root(mboard) / "user/regs").set(user_reg_t(addr, data)); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_user_register(addr, data, m); } } wb_iface::sptr get_user_settings_iface(const size_t chan) { const auto user_settings_path = rx_rf_fe_root(chan) / "user_settings" / "iface"; if (_tree->exists(user_settings_path)) { return _tree->access<wb_iface::sptr>(user_settings_path).get(); } UHD_LOG_WARNING("MULTI_USRP", "Attempting to read back non-existent user settings iface!"); return nullptr; } /******************************************************************* * RX methods ******************************************************************/ rx_streamer::sptr get_rx_stream(const stream_args_t &args) { _check_link_rate(args, false); if (is_device3()) { return _legacy_compat->get_rx_stream(args); } return this->get_device()->get_rx_stream(args); } void set_rx_subdev_spec(const subdev_spec_t &spec, size_t mboard){ if (mboard != ALL_MBOARDS){ _tree->access<subdev_spec_t>(mb_root(mboard) / "rx_subdev_spec").set(spec); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_rx_subdev_spec(spec, m); } } subdev_spec_t get_rx_subdev_spec(size_t mboard) { subdev_spec_t spec = _tree->access<subdev_spec_t>(mb_root(mboard) / "rx_subdev_spec").get(); if (spec.empty()) { try { const std::string db_name = _tree->list(mb_root(mboard) / "dboards").at(0); const std::string fe_name = _tree->list(mb_root(mboard) / "dboards" / db_name / "rx_frontends").at(0); spec.push_back(subdev_spec_pair_t(db_name, fe_name)); _tree->access<subdev_spec_t>(mb_root(mboard) / "rx_subdev_spec").set(spec); } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::get_rx_subdev_spec(%u) failed to make default spec - %s") % mboard % e.what())); } UHD_LOGGER_INFO("MULTI_USRP") << "Selecting default RX front end spec: " << spec.to_pp_string(); } return spec; } size_t get_rx_num_channels(void){ size_t sum = 0; for (size_t m = 0; m < get_num_mboards(); m++){ sum += get_rx_subdev_spec(m).size(); } return sum; } std::string get_rx_subdev_name(size_t chan){ return _tree->access<std::string>(rx_rf_fe_root(chan) / "name").get(); } void set_rx_rate(double rate, size_t chan){ if (is_device3()) { _legacy_compat->set_rx_rate(rate, chan); if (chan == ALL_CHANS) { for (size_t c = 0; c < get_rx_num_channels(); c++){ do_samp_rate_warning_message(rate, get_rx_rate(c), "RX"); } } else { do_samp_rate_warning_message(rate, get_rx_rate(chan), "RX"); } return; } if (chan != ALL_CHANS){ _tree->access<double>(rx_dsp_root(chan) / "rate" / "value").set(rate); do_samp_rate_warning_message(rate, get_rx_rate(chan), "RX"); return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ set_rx_rate(rate, c); } } double get_rx_rate(size_t chan){ return _tree->access<double>(rx_dsp_root(chan) / "rate" / "value").get(); } meta_range_t get_rx_rates(size_t chan){ return _tree->access<meta_range_t>(rx_dsp_root(chan) / "rate" / "range").get(); } tune_result_t set_rx_freq(const tune_request_t &tune_request, size_t chan){ // If any mixer is driven by an external LO the daughterboard assumes that no CORDIC correction is // necessary. Since the LO might be sourced from another daughterboard which would normally apply a // cordic correction a manual DSP tune policy should be used to ensure identical configurations across // daughterboards. if (tune_request.dsp_freq_policy == tune_request.POLICY_AUTO and tune_request.rf_freq_policy == tune_request.POLICY_AUTO) { for (size_t c = 0; c < get_rx_num_channels(); c++) { const bool external_all_los = _tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS) && get_rx_lo_source(ALL_LOS, c) == "external"; if (external_all_los) { UHD_LOGGER_WARNING("MULTI_USRP") << "At least one channel is using an external LO." << "Using a manual DSP frequency policy is recommended to ensure " << "the same frequency shift on all channels."; break; } } } tune_result_t result = tune_xx_subdev_and_dsp(RX_SIGN, _tree->subtree(rx_dsp_root(chan)), _tree->subtree(rx_rf_fe_root(chan)), tune_request); //do_tune_freq_results_message(tune_request, result, get_rx_freq(chan), "RX"); return result; } double get_rx_freq(size_t chan){ return derive_freq_from_xx_subdev_and_dsp(RX_SIGN, _tree->subtree(rx_dsp_root(chan)), _tree->subtree(rx_rf_fe_root(chan))); } freq_range_t get_rx_freq_range(size_t chan){ return make_overall_tune_range( _tree->access<meta_range_t>(rx_rf_fe_root(chan) / "freq" / "range").get(), _tree->access<meta_range_t>(rx_dsp_root(chan) / "freq" / "range").get(), this->get_rx_bandwidth(chan) ); } freq_range_t get_fe_rx_freq_range(size_t chan){ return _tree->access<meta_range_t>(rx_rf_fe_root(chan) / "freq" / "range").get(); } /************************************************************************** * LO controls *************************************************************************/ std::vector<std::string> get_rx_lo_names(size_t chan = 0){ std::vector<std::string> lo_names; if (_tree->exists(rx_rf_fe_root(chan) / "los")) { for(const std::string &name: _tree->list(rx_rf_fe_root(chan) / "los")) { lo_names.push_back(name); } } return lo_names; } void set_rx_lo_source(const std::string &src, const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) { //Special value ALL_LOS support atomically sets the source for all LOs _tree->access<std::string>(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "value").set(src); } else { for(const std::string &n: _tree->list(rx_rf_fe_root(chan) / "los")) { this->set_rx_lo_source(src, n, chan); } } } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { _tree->access<std::string>(rx_rf_fe_root(chan) / "los" / name / "source" / "value").set(src); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual configuration of LOs"); } } const std::string get_rx_lo_source(const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { //Special value ALL_LOS support atomically sets the source for all LOs return _tree->access<std::string>(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "value").get(); } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { return _tree->access<std::string>(rx_rf_fe_root(chan) / "los" / name / "source" / "value").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // If the daughterboard doesn't expose it's LO(s) then it can only be internal return "internal"; } } std::vector<std::string> get_rx_lo_sources(const std::string &name = ALL_LOS, size_t chan = 0) { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) { //Special value ALL_LOS support atomically sets the source for all LOs return _tree->access< std::vector<std::string> >(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "options").get(); } else { return std::vector<std::string>(); } } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { return _tree->access< std::vector<std::string> >(rx_rf_fe_root(chan) / "los" / name / "source" / "options").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // If the daughterboard doesn't expose it's LO(s) then it can only be internal return std::vector<std::string>(1, "internal"); } } void set_rx_lo_export_enabled(bool enabled, const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) { //Special value ALL_LOS support atomically sets the source for all LOs _tree->access<bool>(rx_rf_fe_root(chan) / "los" / ALL_LOS / "export").set(enabled); } else { for(const std::string &n: _tree->list(rx_rf_fe_root(chan) / "los")) { this->set_rx_lo_export_enabled(enabled, n, chan); } } } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { _tree->access<bool>(rx_rf_fe_root(chan) / "los" / name / "export").set(enabled); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual configuration of LOs"); } } bool get_rx_lo_export_enabled(const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { //Special value ALL_LOS support atomically sets the source for all LOs return _tree->access<bool>(rx_rf_fe_root(chan) / "los" / ALL_LOS / "export").get(); } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { return _tree->access<bool>(rx_rf_fe_root(chan) / "los" / name / "export").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // If the daughterboard doesn't expose it's LO(s), assume it cannot export return false; } } double set_rx_lo_freq(double freq, const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency must be set for each stage individually"); } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { _tree->access<double>(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").set(freq); return _tree->access<double>(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual configuration of LOs"); } } double get_rx_lo_freq(const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency must be retrieved for each stage individually"); } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { return _tree->access<double>(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // Return actual RF frequency if the daughterboard doesn't expose it's LO(s) return _tree->access<double>(rx_rf_fe_root(chan) / "freq" /" value").get(); } } freq_range_t get_rx_lo_freq_range(const std::string &name = ALL_LOS, size_t chan = 0){ if (_tree->exists(rx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency range must be retrieved for each stage individually"); } else { if (_tree->exists(rx_rf_fe_root(chan) / "los")) { return _tree->access<freq_range_t>(rx_rf_fe_root(chan) / "los" / name / "freq" / "range").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // Return the actual RF range if the daughterboard doesn't expose it's LO(s) return _tree->access<meta_range_t>(rx_rf_fe_root(chan) / "freq" / "range").get(); } } std::vector<std::string> get_tx_lo_names(const size_t chan = 0){ std::vector<std::string> lo_names; if (_tree->exists(tx_rf_fe_root(chan) / "los")) { for (const std::string &name : _tree->list(tx_rf_fe_root(chan) / "los")) { lo_names.push_back(name); } } return lo_names; } void set_tx_lo_source( const std::string &src, const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(tx_rf_fe_root(chan) / "los" / ALL_LOS)) { // Special value ALL_LOS support atomically sets the source // for all LOs _tree->access<std::string>( tx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "value" ).set(src); } else { for (const auto &n : _tree->list(tx_rf_fe_root(chan) / "los")) { this->set_tx_lo_source(src, n, chan); } } } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { _tree->access<std::string>( tx_rf_fe_root(chan) / "los" / name / "source" / "value" ).set(src); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual " "configuration of LOs"); } } const std::string get_tx_lo_source( const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access<std::string>( tx_rf_fe_root(chan) / "los" / name / "source" / "value" ).get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } else { // If the daughterboard doesn't expose its LO(s) then it can only // be internal return "internal"; } } std::vector<std::string> get_tx_lo_sources( const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(tx_rf_fe_root(chan) / "los" / ALL_LOS)) { // Special value ALL_LOS support atomically sets the source // for all LOs return _tree->access<std::vector<std::string>>( tx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "options" ).get(); } else { return std::vector<std::string>(); } } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access< std::vector<std::string> >(tx_rf_fe_root(chan) / "los" / name / "source" / "options").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // If the daughterboard doesn't expose its LO(s) then it can only // be internal return std::vector<std::string>(1, "internal"); } } void set_tx_lo_export_enabled( const bool enabled, const std::string &name = ALL_LOS, const size_t chan=0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { if (_tree->exists(tx_rf_fe_root(chan) / "los" / ALL_LOS)) { //Special value ALL_LOS support atomically sets the source for all LOs _tree->access<bool>(tx_rf_fe_root(chan) / "los" / ALL_LOS / "export").set(enabled); } else { for(const std::string &n: _tree->list(tx_rf_fe_root(chan) / "los")) { this->set_tx_lo_export_enabled(enabled, n, chan); } } } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { _tree->access<bool>(tx_rf_fe_root(chan) / "los" / name / "export").set(enabled); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual configuration of LOs"); } } bool get_tx_lo_export_enabled( const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access<bool>( tx_rf_fe_root(chan) / "los" / name / "export" ).get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } else { // If the daughterboard doesn't expose its LO(s), assume it cannot // export return false; } } double set_tx_lo_freq( const double freq, const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency must be set for each " "stage individually"); } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access<double>( tx_rf_fe_root(chan) / "los" / name / "freq" / "value" ).set(freq).get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { throw uhd::runtime_error("This device does not support manual " "configuration of LOs"); } } double get_tx_lo_freq( const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency must be retrieved for " "each stage individually"); } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access<double>(tx_rf_fe_root(chan) / "los" / name / "freq" / "value").get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // Return actual RF frequency if the daughterboard doesn't expose // its LO(s) return _tree->access<double>( tx_rf_fe_root(chan) / "freq" /" value" ).get(); } } freq_range_t get_tx_lo_freq_range( const std::string &name = ALL_LOS, const size_t chan = 0 ) { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { if (name == ALL_LOS) { throw uhd::runtime_error("LO frequency range must be retrieved " "for each stage individually"); } else { if (_tree->exists(tx_rf_fe_root(chan) / "los")) { return _tree->access<freq_range_t>( tx_rf_fe_root(chan) / "los" / name / "freq" / "range" ).get(); } else { throw uhd::runtime_error("Could not find LO stage " + name); } } } else { // Return the actual RF range if the daughterboard doesn't expose // its LO(s) return _tree->access<meta_range_t>( tx_rf_fe_root(chan) / "freq" / "range" ).get(); } } /************************************************************************** * Gain control *************************************************************************/ void set_rx_gain(double gain, const std::string &name, size_t chan){ /* Check if any AGC mode is enable and if so warn the user */ if (chan != ALL_CHANS) { if (_tree->exists(rx_rf_fe_root(chan) / "gain" / "agc")) { bool agc = _tree->access<bool>(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").get(); if(agc) { UHD_LOGGER_WARNING("MULTI_USRP") << "AGC enabled for this channel. Setting will be ignored." ; } } } else { for (size_t c = 0; c < get_rx_num_channels(); c++){ if (_tree->exists(rx_rf_fe_root(c) / "gain" / "agc")) { bool agc = _tree->access<bool>(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").get(); if(agc) { UHD_LOGGER_WARNING("MULTI_USRP") << "AGC enabled for this channel. Setting will be ignored." ; } } } } /* Apply gain setting. * If device is in AGC mode it will ignore the setting. */ try { return rx_gain_group(chan)->set_value(gain, name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,rx); } } void set_rx_gain_profile(const std::string& profile, const size_t chan){ if (chan != ALL_CHANS) { if (_tree->exists(rx_rf_fe_root(chan) / "gains/all/profile/value")) { _tree->access<std::string>(rx_rf_fe_root(chan) / "gains/all/profile/value").set(profile); } } else { for (size_t c = 0; c < get_rx_num_channels(); c++){ if (_tree->exists(rx_rf_fe_root(c) / "gains/all/profile/value")) { _tree->access<std::string>(rx_rf_fe_root(chan) / "gains/all/profile/value").set(profile); } } } } std::string get_rx_gain_profile(const size_t chan) { if (chan != ALL_CHANS) { if (_tree->exists(rx_rf_fe_root(chan) / "gains/all/profile/value")) { return _tree->access<std::string>( rx_rf_fe_root(chan) / "gains/all/profile/value" ).get(); } } else { throw uhd::runtime_error("Can't get RX gain profile from " "all channels at once!"); } return ""; } std::vector<std::string> get_rx_gain_profile_names(const size_t chan) { if (chan != ALL_CHANS) { if (_tree->exists(rx_rf_fe_root(chan) / "gains/all/profile/options")) { return _tree->access<std::vector<std::string>>( rx_rf_fe_root(chan) / "gains/all/profile/options" ).get(); } } else { throw uhd::runtime_error("Can't get RX gain profile names from " "all channels at once!"); } return std::vector<std::string>(); } void set_normalized_rx_gain(double gain, size_t chan = 0) { if (gain > 1.0 || gain < 0.0) { throw uhd::runtime_error("Normalized gain out of range, " "must be in [0, 1]."); } const gain_range_t gain_range = get_rx_gain_range(ALL_GAINS, chan); const double abs_gain = (gain * (gain_range.stop() - gain_range.start())) + gain_range.start(); set_rx_gain(abs_gain, ALL_GAINS, chan); } void set_rx_agc(bool enable, size_t chan = 0) { if (chan != ALL_CHANS){ if (_tree->exists(rx_rf_fe_root(chan) / "gain" / "agc" / "enable")) { _tree->access<bool>(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").set(enable); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "AGC is not available on this device." ; } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ this->set_rx_agc(enable, c); } } double get_rx_gain(const std::string &name, size_t chan){ try { return rx_gain_group(chan)->get_value(name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,rx); } } double get_normalized_rx_gain(size_t chan) { gain_range_t gain_range = get_rx_gain_range(ALL_GAINS, chan); double gain_range_width = gain_range.stop() - gain_range.start(); // In case we have a device without a range of gains: if (gain_range_width == 0.0) { return 0; } double norm_gain = (get_rx_gain(ALL_GAINS, chan) - gain_range.start()) / gain_range_width; // Avoid rounding errors: if (norm_gain > 1.0) return 1.0; if (norm_gain < 0.0) return 0.0; return norm_gain; } gain_range_t get_rx_gain_range(const std::string &name, size_t chan){ try { return rx_gain_group(chan)->get_range(name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,rx); } } std::vector<std::string> get_rx_gain_names(size_t chan){ return rx_gain_group(chan)->get_names(); } void set_rx_antenna(const std::string &ant, size_t chan){ _tree->access<std::string>(rx_rf_fe_root(chan) / "antenna" / "value").set(ant); } std::string get_rx_antenna(size_t chan){ return _tree->access<std::string>(rx_rf_fe_root(chan) / "antenna" / "value").get(); } std::vector<std::string> get_rx_antennas(size_t chan){ return _tree->access<std::vector<std::string> >(rx_rf_fe_root(chan) / "antenna" / "options").get(); } void set_rx_bandwidth(double bandwidth, size_t chan){ _tree->access<double>(rx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth); } double get_rx_bandwidth(size_t chan){ return _tree->access<double>(rx_rf_fe_root(chan) / "bandwidth" / "value").get(); } meta_range_t get_rx_bandwidth_range(size_t chan){ return _tree->access<meta_range_t>(rx_rf_fe_root(chan) / "bandwidth" / "range").get(); } dboard_iface::sptr get_rx_dboard_iface(size_t chan){ return _tree->access<dboard_iface::sptr>(rx_rf_fe_root(chan).branch_path().branch_path() / "iface").get(); } sensor_value_t get_rx_sensor(const std::string &name, size_t chan){ return _tree->access<sensor_value_t>(rx_rf_fe_root(chan) / "sensors" / name).get(); } std::vector<std::string> get_rx_sensor_names(size_t chan){ std::vector<std::string> sensor_names; if (_tree->exists(rx_rf_fe_root(chan) / "sensors")) { sensor_names = _tree->list(rx_rf_fe_root(chan) / "sensors"); } return sensor_names; } void set_rx_dc_offset(const bool enb, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(rx_fe_root(chan) / "dc_offset" / "enable")) { _tree->access<bool>(rx_fe_root(chan) / "dc_offset" / "enable").set(enb); } else if (_tree->exists(rx_rf_fe_root(chan) / "dc_offset" / "enable")) { /*For B2xx devices the dc-offset correction is implemented in the rf front-end*/ _tree->access<bool>(rx_rf_fe_root(chan) / "dc_offset" / "enable").set(enb); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting DC offset compensation is not possible on this device." ; } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ this->set_rx_dc_offset(enb, c); } } void set_rx_dc_offset(const std::complex<double> &offset, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(rx_fe_root(chan) / "dc_offset" / "value")) { _tree->access<std::complex<double> >(rx_fe_root(chan) / "dc_offset" / "value").set(offset); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting DC offset is not possible on this device." ; } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ this->set_rx_dc_offset(offset, c); } } meta_range_t get_rx_dc_offset_range(size_t chan) { if (_tree->exists(rx_fe_root(chan) / "dc_offset" / "range")) { return _tree->access<uhd::meta_range_t>(rx_fe_root(chan) / "dc_offset" / "range").get(); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "This device does not support querying the RX DC offset range." ; return meta_range_t(0, 0); } } void set_rx_iq_balance(const bool enb, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(rx_rf_fe_root(chan) / "iq_balance" / "enable")) { _tree->access<bool>(rx_rf_fe_root(chan) / "iq_balance" / "enable").set(enb); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting IQ imbalance compensation is not possible on this device." ; } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ this->set_rx_iq_balance(enb, c); } } void set_rx_iq_balance(const std::complex<double> &offset, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(rx_fe_root(chan) / "iq_balance" / "value")) { _tree->access<std::complex<double> >(rx_fe_root(chan) / "iq_balance" / "value").set(offset); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting IQ balance is not possible on this device." ; } return; } for (size_t c = 0; c < get_rx_num_channels(); c++){ this->set_rx_iq_balance(offset, c); } } std::vector<std::string> get_filter_names(const std::string &search_mask) { std::vector<std::string> ret; for (size_t chan = 0; chan < get_rx_num_channels(); chan++){ if (_tree->exists(rx_rf_fe_root(chan) / "filters")) { std::vector<std::string> names = _tree->list(rx_rf_fe_root(chan) / "filters"); for(size_t i = 0; i < names.size(); i++) { std::string name = rx_rf_fe_root(chan) / "filters" / names[i]; if((search_mask.empty()) or boost::contains(name, search_mask)) { ret.push_back(name); } } } if (_tree->exists(rx_dsp_root(chan) / "filters")) { std::vector<std::string> names = _tree->list(rx_dsp_root(chan) / "filters"); for(size_t i = 0; i < names.size(); i++) { std::string name = rx_dsp_root(chan) / "filters" / names[i]; if((search_mask.empty()) or (boost::contains(name, search_mask))) { ret.push_back(name); } } } } for (size_t chan = 0; chan < get_tx_num_channels(); chan++){ if (_tree->exists(tx_rf_fe_root(chan) / "filters")) { std::vector<std::string> names = _tree->list(tx_rf_fe_root(chan) / "filters"); for(size_t i = 0; i < names.size(); i++) { std::string name = tx_rf_fe_root(chan) / "filters" / names[i]; if((search_mask.empty()) or (boost::contains(name, search_mask))) { ret.push_back(name); } } } if (_tree->exists(rx_dsp_root(chan) / "filters")) { std::vector<std::string> names = _tree->list(tx_dsp_root(chan) / "filters"); for(size_t i = 0; i < names.size(); i++) { std::string name = tx_dsp_root(chan) / "filters" / names[i]; if((search_mask.empty()) or (boost::contains(name, search_mask))) { ret.push_back(name); } } } } return ret; } filter_info_base::sptr get_filter(const std::string &path) { std::vector<std::string> possible_names = get_filter_names(""); std::vector<std::string>::iterator it; it = find(possible_names.begin(), possible_names.end(), path); if (it == possible_names.end()) { throw uhd::runtime_error("Attempting to get non-existing filter: "+path); } return _tree->access<filter_info_base::sptr>(path / "value").get(); } void set_filter(const std::string &path, filter_info_base::sptr filter) { std::vector<std::string> possible_names = get_filter_names(""); std::vector<std::string>::iterator it; it = find(possible_names.begin(), possible_names.end(), path); if (it == possible_names.end()) { throw uhd::runtime_error("Attempting to set non-existing filter: "+path); } _tree->access<filter_info_base::sptr>(path / "value").set(filter); } /******************************************************************* * TX methods ******************************************************************/ tx_streamer::sptr get_tx_stream(const stream_args_t &args) { _check_link_rate(args, true); if (is_device3()) { return _legacy_compat->get_tx_stream(args); } return this->get_device()->get_tx_stream(args); } void set_tx_subdev_spec(const subdev_spec_t &spec, size_t mboard){ if (mboard != ALL_MBOARDS){ _tree->access<subdev_spec_t>(mb_root(mboard) / "tx_subdev_spec").set(spec); return; } for (size_t m = 0; m < get_num_mboards(); m++){ set_tx_subdev_spec(spec, m); } } subdev_spec_t get_tx_subdev_spec(size_t mboard) { subdev_spec_t spec = _tree->access<subdev_spec_t>(mb_root(mboard) / "tx_subdev_spec").get(); if (spec.empty()) { try { const std::string db_name = _tree->list(mb_root(mboard) / "dboards").at(0); const std::string fe_name = _tree->list(mb_root(mboard) / "dboards" / db_name / "tx_frontends").at(0); spec.push_back(subdev_spec_pair_t(db_name, fe_name)); _tree->access<subdev_spec_t>(mb_root(mboard) / "tx_subdev_spec").set(spec); } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::get_tx_subdev_spec(%u) failed to make default spec - %s") % mboard % e.what())); } UHD_LOGGER_INFO("MULTI_USRP") << "Selecting default TX front end spec: " << spec.to_pp_string(); } return spec; } size_t get_tx_num_channels(void){ size_t sum = 0; for (size_t m = 0; m < get_num_mboards(); m++){ sum += get_tx_subdev_spec(m).size(); } return sum; } std::string get_tx_subdev_name(size_t chan){ return _tree->access<std::string>(tx_rf_fe_root(chan) / "name").get(); } void set_tx_rate(double rate, size_t chan){ if (is_device3()) { _legacy_compat->set_tx_rate(rate, chan); if (chan == ALL_CHANS) { for (size_t c = 0; c < get_tx_num_channels(); c++){ do_samp_rate_warning_message(rate, get_tx_rate(c), "TX"); } } else { do_samp_rate_warning_message(rate, get_tx_rate(chan), "TX"); } return; } if (chan != ALL_CHANS){ _tree->access<double>(tx_dsp_root(chan) / "rate" / "value").set(rate); do_samp_rate_warning_message(rate, get_tx_rate(chan), "TX"); return; } for (size_t c = 0; c < get_tx_num_channels(); c++){ set_tx_rate(rate, c); } } double get_tx_rate(size_t chan){ return _tree->access<double>(tx_dsp_root(chan) / "rate" / "value").get(); } meta_range_t get_tx_rates(size_t chan){ return _tree->access<meta_range_t>(tx_dsp_root(chan) / "rate" / "range").get(); } tune_result_t set_tx_freq(const tune_request_t &tune_request, size_t chan){ tune_result_t result = tune_xx_subdev_and_dsp(TX_SIGN, _tree->subtree(tx_dsp_root(chan)), _tree->subtree(tx_rf_fe_root(chan)), tune_request); //do_tune_freq_results_message(tune_request, result, get_tx_freq(chan), "TX"); return result; } double get_tx_freq(size_t chan){ return derive_freq_from_xx_subdev_and_dsp(TX_SIGN, _tree->subtree(tx_dsp_root(chan)), _tree->subtree(tx_rf_fe_root(chan))); } freq_range_t get_tx_freq_range(size_t chan){ return make_overall_tune_range( _tree->access<meta_range_t>(tx_rf_fe_root(chan) / "freq" / "range").get(), _tree->access<meta_range_t>(tx_dsp_root(chan) / "freq" / "range").get(), this->get_tx_bandwidth(chan) ); } freq_range_t get_fe_tx_freq_range(size_t chan){ return _tree->access<meta_range_t>(tx_rf_fe_root(chan) / "freq" / "range").get(); } void set_tx_gain(double gain, const std::string &name, size_t chan){ try { return tx_gain_group(chan)->set_value(gain, name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,tx); } } void set_tx_gain_profile(const std::string& profile, const size_t chan){ if (chan != ALL_CHANS) { if (_tree->exists(tx_rf_fe_root(chan) / "gains/all/profile/value")) { _tree->access<std::string>(tx_rf_fe_root(chan) / "gains/all/profile/value").set(profile); } } else { for (size_t c = 0; c < get_tx_num_channels(); c++){ if (_tree->exists(tx_rf_fe_root(c) / "gains/all/profile/value")) { _tree->access<std::string>(tx_rf_fe_root(chan) / "gains/all/profile/value").set(profile); } } } } std::string get_tx_gain_profile(const size_t chan) { if (chan != ALL_CHANS) { if (_tree->exists(tx_rf_fe_root(chan) / "gains/all/profile/value")) { return _tree->access<std::string>( tx_rf_fe_root(chan) / "gains/all/profile/value" ).get(); } } else { throw uhd::runtime_error("Can't get TX gain profile from " "all channels at once!"); } return ""; } std::vector<std::string> get_tx_gain_profile_names(const size_t chan) { if (chan != ALL_CHANS) { if (_tree->exists(tx_rf_fe_root(chan) / "gains/all/profile/options")) { return _tree->access<std::vector<std::string>>( tx_rf_fe_root(chan) / "gains/all/profile/options" ).get(); } } else { throw uhd::runtime_error("Can't get TX gain profile names from " "all channels at once!"); } return std::vector<std::string>(); } void set_normalized_tx_gain(double gain, size_t chan = 0) { if (gain > 1.0 || gain < 0.0) { throw uhd::runtime_error("Normalized gain out of range, must be in [0, 1]."); } gain_range_t gain_range = get_tx_gain_range(ALL_GAINS, chan); double abs_gain = (gain * (gain_range.stop() - gain_range.start())) + gain_range.start(); set_tx_gain(abs_gain, ALL_GAINS, chan); } double get_tx_gain(const std::string &name, size_t chan){ try { return tx_gain_group(chan)->get_value(name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,tx); } } double get_normalized_tx_gain(size_t chan) { gain_range_t gain_range = get_tx_gain_range(ALL_GAINS, chan); double gain_range_width = gain_range.stop() - gain_range.start(); // In case we have a device without a range of gains: if (gain_range_width == 0.0) { return 0.0; } double norm_gain = (get_tx_gain(ALL_GAINS, chan) - gain_range.start()) / gain_range_width; // Avoid rounding errors: if (norm_gain > 1.0) return 1.0; if (norm_gain < 0.0) return 0.0; return norm_gain; } gain_range_t get_tx_gain_range(const std::string &name, size_t chan){ try { return tx_gain_group(chan)->get_range(name); } catch (uhd::key_error &) { THROW_GAIN_NAME_ERROR(name,chan,tx); } } std::vector<std::string> get_tx_gain_names(size_t chan){ return tx_gain_group(chan)->get_names(); } void set_tx_antenna(const std::string &ant, size_t chan){ _tree->access<std::string>(tx_rf_fe_root(chan) / "antenna" / "value").set(ant); } std::string get_tx_antenna(size_t chan){ return _tree->access<std::string>(tx_rf_fe_root(chan) / "antenna" / "value").get(); } std::vector<std::string> get_tx_antennas(size_t chan){ return _tree->access<std::vector<std::string> >(tx_rf_fe_root(chan) / "antenna" / "options").get(); } void set_tx_bandwidth(double bandwidth, size_t chan){ _tree->access<double>(tx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth); } double get_tx_bandwidth(size_t chan){ return _tree->access<double>(tx_rf_fe_root(chan) / "bandwidth" / "value").get(); } meta_range_t get_tx_bandwidth_range(size_t chan){ return _tree->access<meta_range_t>(tx_rf_fe_root(chan) / "bandwidth" / "range").get(); } dboard_iface::sptr get_tx_dboard_iface(size_t chan){ return _tree->access<dboard_iface::sptr>(tx_rf_fe_root(chan).branch_path().branch_path() / "iface").get(); } sensor_value_t get_tx_sensor(const std::string &name, size_t chan){ return _tree->access<sensor_value_t>(tx_rf_fe_root(chan) / "sensors" / name).get(); } std::vector<std::string> get_tx_sensor_names(size_t chan){ std::vector<std::string> sensor_names; if (_tree->exists(rx_rf_fe_root(chan) / "sensors")) { sensor_names = _tree->list(tx_rf_fe_root(chan) / "sensors"); } return sensor_names; } void set_tx_dc_offset(const std::complex<double> &offset, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(tx_fe_root(chan) / "dc_offset" / "value")) { _tree->access<std::complex<double> >(tx_fe_root(chan) / "dc_offset" / "value").set(offset); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting DC offset is not possible on this device." ; } return; } for (size_t c = 0; c < get_tx_num_channels(); c++){ this->set_tx_dc_offset(offset, c); } } meta_range_t get_tx_dc_offset_range(size_t chan) { if (_tree->exists(tx_fe_root(chan) / "dc_offset" / "range")) { return _tree->access<uhd::meta_range_t>(tx_fe_root(chan) / "dc_offset" / "range").get(); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "This device does not support querying the TX DC offset range." ; return meta_range_t(0, 0); } } void set_tx_iq_balance(const std::complex<double> &offset, size_t chan){ if (chan != ALL_CHANS){ if (_tree->exists(tx_fe_root(chan) / "iq_balance" / "value")) { _tree->access<std::complex<double> >(tx_fe_root(chan) / "iq_balance" / "value").set(offset); } else { UHD_LOGGER_WARNING("MULTI_USRP") << "Setting IQ balance is not possible on this device." ; } return; } for (size_t c = 0; c < get_tx_num_channels(); c++){ this->set_tx_iq_balance(offset, c); } } /******************************************************************* * GPIO methods ******************************************************************/ std::vector<std::string> get_gpio_banks(const size_t mboard) { std::vector<std::string> banks; if (_tree->exists(mb_root(mboard) / "gpio")) { for(const std::string &name: _tree->list(mb_root(mboard) / "gpio")) { banks.push_back(name); } } for(const std::string &name: _tree->list(mb_root(mboard) / "dboards")) { banks.push_back("RX"+name); banks.push_back("TX"+name); } return banks; } void set_gpio_attr( const std::string &bank, const std::string &attr, const uint32_t value, const uint32_t mask, const size_t mboard ) { std::vector<std::string> attr_value; if (_tree->exists(mb_root(mboard) / "gpio" / bank)) { if (_tree->exists(mb_root(mboard) / "gpio" / bank / attr)){ const auto attr_type = gpio_atr::gpio_attr_rev_map.at(attr); switch (attr_type) { case gpio_atr::GPIO_SRC: throw uhd::runtime_error( "Can't set SRC attribute using integer value!" ); break; case gpio_atr::GPIO_CTRL: case gpio_atr::GPIO_DDR: { attr_value = _tree->access<std::vector<std::string>>( mb_root(mboard) / "gpio" / bank / attr ).get(); UHD_ASSERT_THROW(attr_value.size() <= 32); std::bitset<32> bit_mask = std::bitset<32>(mask); std::bitset<32> bit_value = std::bitset<32>(value); for (size_t i = 0; i < bit_mask.size(); i++) { if (bit_mask[i] == 1) { attr_value[i] = gpio_atr::attr_value_map.at(attr_type).at(bit_value[i]); } } _tree->access<std::vector<std::string>>( mb_root(mboard) / "gpio" / bank / attr ).set(attr_value); } break; default:{ const uint32_t current = _tree->access<uint32_t>( mb_root(mboard) / "gpio" / bank / attr).get(); const uint32_t new_value = (current & ~mask) | (value & mask); _tree->access<uint32_t>(mb_root(mboard) / "gpio" / bank / attr).set(new_value); } break; } return; } else { throw uhd::runtime_error(str( boost::format("The hardware has no gpio attribute: `%s':\n") % attr )); } } if (bank.size() > 2 and bank[1] == 'X') { const std::string name = bank.substr(2); const dboard_iface::unit_t unit = (bank[0] == 'R') ? dboard_iface::UNIT_RX : dboard_iface::UNIT_TX; auto iface = _tree->access<dboard_iface::sptr>( mb_root(mboard) / "dboards" / name / "iface").get(); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_CTRL)) iface->set_pin_ctrl(unit, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_DDR)) iface->set_gpio_ddr(unit, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_OUT)) iface->set_gpio_out(unit, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_ATR_0X)) iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_ATR_RX)) iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_ATR_TX)) iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_ATR_XX)) iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, uint16_t(value), uint16_t(mask)); if (attr == gpio_atr::gpio_attr_map.at(gpio_atr::GPIO_SRC)) { throw uhd::runtime_error("Setting gpio source does not supported in daughter board."); } return; } throw uhd::runtime_error(str( boost::format("The hardware has no GPIO bank `%s'") % bank )); } void set_gpio_attr( const std::string &bank, const std::string &attr, const std::string &str_value, const uint32_t mask, const size_t mboard ) { const auto attr_type = gpio_atr::gpio_attr_rev_map.at(attr); if (_tree->exists(mb_root(mboard) / "gpio" / bank)) { if (_tree->exists(mb_root(mboard) / "gpio" / bank / attr)) { switch (attr_type){ case gpio_atr::GPIO_SRC: case gpio_atr::GPIO_CTRL: case gpio_atr::GPIO_DDR:{ auto attr_value = _tree->access<std::vector<std::string>>( mb_root(mboard) / "gpio" / bank / attr).get(); UHD_ASSERT_THROW(attr_value.size() <= 32); std::bitset<32> bit_mask = std::bitset<32>(mask); for (size_t i = 0 ; i < bit_mask.size(); i++) { if (bit_mask[i] == 1) { attr_value[i] = str_value; } } _tree->access<std::vector<std::string>>( mb_root(mboard) / "gpio" / bank / attr ).set(attr_value); } break; default: { const uint32_t value = gpio_atr::gpio_attr_value_pair.at(attr).at(str_value) == 0 ? -1 : 0; const uint32_t current = _tree->access<uint32_t>( mb_root(mboard) / "gpio" / bank / attr).get(); const uint32_t new_value = (current & ~mask) | (value & mask); _tree->access<uint32_t>( mb_root(mboard) / "gpio" / bank / attr ).set(new_value); } break; } return; } else { throw uhd::runtime_error(str( boost::format("The hardware has no gpio attribute `%s'") % attr )); } } // If the bank is not in the prop tree, convert string value to integer // value and have it handled by the other set_gpio_attr() const uint32_t value = gpio_atr::gpio_attr_value_pair.at(attr).at(str_value) == 0 ? -1 : 0; set_gpio_attr( bank, attr, value, mask, mboard ); } uint32_t get_gpio_attr( const std::string &bank, const std::string &attr, const size_t mboard ) { std::vector<std::string> str_val; if (_tree->exists(mb_root(mboard) / "gpio" / bank)) { if (_tree->exists(mb_root(mboard) / "gpio" / bank / attr)) { const auto attr_type = gpio_atr::gpio_attr_rev_map.at(attr); switch (attr_type){ case gpio_atr::GPIO_SRC: throw uhd::runtime_error("Can't set SRC attribute using integer value"); case gpio_atr::GPIO_CTRL: case gpio_atr::GPIO_DDR: { str_val = _tree->access<std::vector<std::string>>( mb_root(mboard) / "gpio" / bank / attr).get(); uint32_t val = 0; for(size_t i = 0 ; i < str_val.size() ; i++) { val += usrp::gpio_atr::gpio_attr_value_pair.at(attr).at(str_val[i]) << i; } return val; } default: return uint32_t(_tree->access<uint64_t>( mb_root(mboard) / "gpio" / bank / attr).get()); } return 0; } else { throw uhd::runtime_error(str( boost::format("The hardware has no gpio attribute: `%s'") % attr )); } } if (bank.size() > 2 and bank[1] == 'X') { const std::string name = bank.substr(2); const dboard_iface::unit_t unit = (bank[0] == 'R')? dboard_iface::UNIT_RX : dboard_iface::UNIT_TX; auto iface = _tree->access<dboard_iface::sptr>( mb_root(mboard) / "dboards" / name / "iface").get(); if (attr == "CTRL") return iface->get_pin_ctrl(unit); if (attr == "DDR") return iface->get_gpio_ddr(unit); if (attr == "OUT") return iface->get_gpio_out(unit); if (attr == "ATR_0X") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_IDLE); if (attr == "ATR_RX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY); if (attr == "ATR_TX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY); if (attr == "ATR_XX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX); if (attr == "READBACK") return iface->read_gpio(unit); } throw uhd::runtime_error(str( boost::format("The hardware has no gpio bank `%s'") % bank )); } std::vector<std::string> get_gpio_string_attr( const std::string &bank, const std::string &attr, const size_t mboard ) { const auto attr_type = gpio_atr::gpio_attr_rev_map.at(attr); auto str_val = std::vector<std::string>(32, gpio_atr::default_attr_value_map.at(attr_type)); if (_tree->exists(mb_root(mboard) / "gpio" / bank)) { if (_tree->exists(mb_root(mboard) / "gpio" / bank / attr)) { const auto attr_type = gpio_atr::gpio_attr_rev_map.at(attr); switch (attr_type){ case gpio_atr::GPIO_SRC: case gpio_atr::GPIO_CTRL: case gpio_atr::GPIO_DDR: return _tree->access<std::vector<std::string>>(mb_root(mboard) / "gpio" / bank / attr).get(); default: { uint32_t value = uint32_t(_tree->access<uint32_t>(mb_root(mboard) / "gpio" / bank / attr).get()); std::bitset<32> bit_value = std::bitset<32>(value); for (size_t i = 0; i < bit_value.size(); i++) { str_val[i] = bit_value[i] == 0 ? "LOW" : "HIGH"; } return str_val; } } } else { throw uhd::runtime_error(str( boost::format("The hardware has no gpio attribute: `%s'") % attr )); } } throw uhd::runtime_error(str( boost::format("The hardware has no support for given gpio bank name `%s'") % bank )); } void write_register(const std::string &path, const uint32_t field, const uint64_t value, const size_t mboard) { if (_tree->exists(mb_root(mboard) / "registers")) { uhd::soft_regmap_accessor_t::sptr accessor = _tree->access<uhd::soft_regmap_accessor_t::sptr>(mb_root(mboard) / "registers").get(); uhd::soft_register_base& reg = accessor->lookup(path); if (not reg.is_writable()) { throw uhd::runtime_error("multi_usrp::write_register - register not writable: " + path); } switch (reg.get_bitwidth()) { case 16: if (reg.is_readable()) uhd::soft_register_base::cast<uhd::soft_reg16_rw_t>(reg).write(field, static_cast<uint16_t>(value)); else uhd::soft_register_base::cast<uhd::soft_reg16_wo_t>(reg).write(field, static_cast<uint16_t>(value)); break; case 32: if (reg.is_readable()) uhd::soft_register_base::cast<uhd::soft_reg32_rw_t>(reg).write(field, static_cast<uint32_t>(value)); else uhd::soft_register_base::cast<uhd::soft_reg32_wo_t>(reg).write(field, static_cast<uint32_t>(value)); break; case 64: if (reg.is_readable()) uhd::soft_register_base::cast<uhd::soft_reg64_rw_t>(reg).write(field, value); else uhd::soft_register_base::cast<uhd::soft_reg64_wo_t>(reg).write(field, value); break; default: throw uhd::assertion_error("multi_usrp::write_register - register has invalid bitwidth"); } } else { throw uhd::not_implemented_error("multi_usrp::write_register - register IO not supported for this device"); } } uint64_t read_register(const std::string &path, const uint32_t field, const size_t mboard) { if (_tree->exists(mb_root(mboard) / "registers")) { uhd::soft_regmap_accessor_t::sptr accessor = _tree->access<uhd::soft_regmap_accessor_t::sptr>(mb_root(mboard) / "registers").get(); uhd::soft_register_base& reg = accessor->lookup(path); if (not reg.is_readable()) { throw uhd::runtime_error("multi_usrp::read_register - register not readable: " + path); } switch (reg.get_bitwidth()) { case 16: if (reg.is_writable()) return static_cast<uint64_t>(uhd::soft_register_base::cast<uhd::soft_reg16_rw_t>(reg).read(field)); else return static_cast<uint64_t>(uhd::soft_register_base::cast<uhd::soft_reg16_ro_t>(reg).read(field)); break; case 32: if (reg.is_writable()) return static_cast<uint64_t>(uhd::soft_register_base::cast<uhd::soft_reg32_rw_t>(reg).read(field)); else return static_cast<uint64_t>(uhd::soft_register_base::cast<uhd::soft_reg32_ro_t>(reg).read(field)); break; case 64: if (reg.is_writable()) return uhd::soft_register_base::cast<uhd::soft_reg64_rw_t>(reg).read(field); else return uhd::soft_register_base::cast<uhd::soft_reg64_ro_t>(reg).read(field); break; default: throw uhd::assertion_error("multi_usrp::read_register - register has invalid bitwidth: " + path); } } throw uhd::not_implemented_error("multi_usrp::read_register - register IO not supported for this device"); } std::vector<std::string> enumerate_registers(const size_t mboard) { if (_tree->exists(mb_root(mboard) / "registers")) { uhd::soft_regmap_accessor_t::sptr accessor = _tree->access<uhd::soft_regmap_accessor_t::sptr>(mb_root(mboard) / "registers").get(); return accessor->enumerate(); } else { return std::vector<std::string>(); } } register_info_t get_register_info(const std::string &path, const size_t mboard = 0) { if (_tree->exists(mb_root(mboard) / "registers")) { uhd::soft_regmap_accessor_t::sptr accessor = _tree->access<uhd::soft_regmap_accessor_t::sptr>(mb_root(mboard) / "registers").get(); uhd::soft_register_base& reg = accessor->lookup(path); register_info_t info; info.bitwidth = reg.get_bitwidth(); info.readable = reg.is_readable(); info.writable = reg.is_writable(); return info; } else { throw uhd::not_implemented_error("multi_usrp::read_register - register IO not supported for this device"); } } private: device::sptr _dev; property_tree::sptr _tree; bool _is_device3; uhd::rfnoc::legacy_compat::sptr _legacy_compat; struct mboard_chan_pair{ size_t mboard, chan; mboard_chan_pair(void): mboard(0), chan(0){} }; mboard_chan_pair rx_chan_to_mcp(size_t chan){ mboard_chan_pair mcp; mcp.chan = chan; for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){ size_t sss = get_rx_subdev_spec(mcp.mboard).size(); if (mcp.chan < sss) break; mcp.chan -= sss; } if (mcp.mboard >= get_num_mboards()) { throw uhd::index_error(str(boost::format("multi_usrp: RX channel %u out of range for configured RX frontends") % chan)); } return mcp; } mboard_chan_pair tx_chan_to_mcp(size_t chan){ mboard_chan_pair mcp; mcp.chan = chan; for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){ size_t sss = get_tx_subdev_spec(mcp.mboard).size(); if (mcp.chan < sss) break; mcp.chan -= sss; } if (mcp.mboard >= get_num_mboards()) { throw uhd::index_error(str(boost::format("multi_usrp: TX channel %u out of range for configured TX frontends") % chan)); } return mcp; } fs_path mb_root(const size_t mboard) { try { const std::string tree_path = "/mboards/" + std::to_string(mboard); if (_tree->exists(tree_path)) { return tree_path; } else { throw uhd::index_error(str(boost::format("multi_usrp::mb_root(%u) - path not found") % mboard)); } } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::mb_root(%u) - %s") % mboard % e.what())); } } fs_path rx_dsp_root(const size_t chan) { mboard_chan_pair mcp = rx_chan_to_mcp(chan); if (is_device3()) { return _legacy_compat->rx_dsp_root(mcp.mboard, mcp.chan); } if (_tree->exists(mb_root(mcp.mboard) / "rx_chan_dsp_mapping")) { std::vector<size_t> map = _tree->access<std::vector<size_t> >(mb_root(mcp.mboard) / "rx_chan_dsp_mapping").get(); UHD_ASSERT_THROW(map.size() > mcp.chan); mcp.chan = map[mcp.chan]; } try { const std::string tree_path = mb_root(mcp.mboard) / "rx_dsps" / mcp.chan; if (_tree->exists(tree_path)) { return tree_path; } else { throw uhd::index_error(str(boost::format("multi_usrp::rx_dsp_root(%u) - mcp(%u) - path not found") % chan % mcp.chan)); } } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::rx_dsp_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } fs_path tx_dsp_root(const size_t chan) { mboard_chan_pair mcp = tx_chan_to_mcp(chan); if (is_device3()) { return _legacy_compat->tx_dsp_root(mcp.mboard, mcp.chan); } if (_tree->exists(mb_root(mcp.mboard) / "tx_chan_dsp_mapping")) { std::vector<size_t> map = _tree->access<std::vector<size_t> >(mb_root(mcp.mboard) / "tx_chan_dsp_mapping").get(); UHD_ASSERT_THROW(map.size() > mcp.chan); mcp.chan = map[mcp.chan]; } try { const std::string tree_path = mb_root(mcp.mboard) / "tx_dsps" / mcp.chan; if (_tree->exists(tree_path)) { return tree_path; } else { throw uhd::index_error(str(boost::format("multi_usrp::tx_dsp_root(%u) - mcp(%u) - path not found") % chan % mcp.chan)); } } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::tx_dsp_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } fs_path rx_fe_root(const size_t chan) { mboard_chan_pair mcp = rx_chan_to_mcp(chan); if (is_device3()) { return _legacy_compat->rx_fe_root(mcp.mboard, mcp.chan); } try { const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan); return mb_root(mcp.mboard) / "rx_frontends" / spec.db_name; } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::rx_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } fs_path tx_fe_root(const size_t chan) { mboard_chan_pair mcp = tx_chan_to_mcp(chan); if (is_device3()) { return _legacy_compat->tx_fe_root(mcp.mboard, mcp.chan); } try { const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan); return mb_root(mcp.mboard) / "tx_frontends" / spec.db_name; } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::tx_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } size_t get_radio_index(const std::string slot_name) { if (slot_name == "A") { return 0; } else if (slot_name == "B") { return 1; } else if (slot_name == "C") { return 2; } else if (slot_name == "D") { return 3; } else { throw uhd::key_error(str( boost::format("[multi_usrp]: radio slot name %s out of supported range.") % slot_name )); } } fs_path rx_rf_fe_root(const size_t chan) { mboard_chan_pair mcp = rx_chan_to_mcp(chan); try { const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan); return mb_root(mcp.mboard) / "dboards" / spec.db_name / "rx_frontends" / spec.sd_name; } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::rx_rf_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } fs_path tx_rf_fe_root(const size_t chan) { mboard_chan_pair mcp = tx_chan_to_mcp(chan); try { const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan); return mb_root(mcp.mboard) / "dboards" / spec.db_name / "tx_frontends" / spec.sd_name; } catch(const std::exception &e) { throw uhd::index_error(str(boost::format("multi_usrp::tx_rf_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what())); } } gain_group::sptr rx_gain_group(size_t chan){ mboard_chan_pair mcp = rx_chan_to_mcp(chan); const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan); gain_group::sptr gg = gain_group::make(); for(const std::string &name: _tree->list(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains")){ gg->register_fcns("ADC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains" / name)), 0 /* low prio */); } for(const std::string &name: _tree->list(rx_rf_fe_root(chan) / "gains")){ gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(rx_rf_fe_root(chan) / "gains" / name)), 1 /* high prio */); } return gg; } gain_group::sptr tx_gain_group(size_t chan){ mboard_chan_pair mcp = tx_chan_to_mcp(chan); const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan); gain_group::sptr gg = gain_group::make(); for(const std::string &name: _tree->list(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains")){ gg->register_fcns("DAC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains" / name)), 1 /* high prio */); } for(const std::string &name: _tree->list(tx_rf_fe_root(chan) / "gains")){ gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(tx_rf_fe_root(chan) / "gains" / name)), 0 /* low prio */); } return gg; } //! \param is_tx True for tx // Assumption is that all mboards use the same link // and that the rate sum is evenly distributed among the mboards bool _check_link_rate(const stream_args_t &args, bool is_tx) { bool link_rate_is_ok = true; size_t bytes_per_sample = convert::get_bytes_per_item(args.otw_format.empty() ? "sc16" : args.otw_format); double max_link_rate = 0; double sum_rate = 0; for(const size_t chan: args.channels) { mboard_chan_pair mcp = is_tx ? tx_chan_to_mcp(chan) : rx_chan_to_mcp(chan); if (_tree->exists(mb_root(mcp.mboard) / "link_max_rate")) { max_link_rate = std::max( max_link_rate, _tree->access<double>(mb_root(mcp.mboard) / "link_max_rate").get() ); } sum_rate += is_tx ? get_tx_rate(chan) : get_rx_rate(chan); } sum_rate /= get_num_mboards(); if (max_link_rate > 0 and (max_link_rate / bytes_per_sample) < sum_rate) { UHD_LOGGER_WARNING("MULTI_USRP") << boost::format( "The total sum of rates (%f MSps on %u channels) exceeds the maximum capacity of the connection.\n" "This can cause %s." ) % (sum_rate/1e6) % args.channels.size() % (is_tx ? "underruns (U)" : "overflows (O)") ; link_rate_is_ok = false; } return link_rate_is_ok; } }; multi_usrp::~multi_usrp(void){ /* NOP */ } /*********************************************************************** * The Make Function **********************************************************************/ multi_usrp::sptr multi_usrp::make(const device_addr_t &dev_addr){ UHD_LOGGER_TRACE("MULTI_USRP") << "multi_usrp::make with args " << dev_addr.to_pp_string() ; return sptr(new multi_usrp_impl(dev_addr)); }