//
// Copyright 2010-2016 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "legacy_compat.hpp"
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
const std::string multi_usrp::ALL_GAINS = "";
const std::string multi_usrp::ALL_LOS = "all";
UHD_INLINE std::string string_vector_to_string(std::vector values, std::string delimiter = std::string(" "))
{
std::string out = "";
for (std::vector::iterator iter = values.begin(); iter != values.end(); iter++)
{
out += (iter != values.begin() ? delimiter : "") + *iter;
}
return out;
}
#define THROW_GAIN_NAME_ERROR(name,chan,dir) throw uhd::exception::runtime_error( \
(boost::format("%s: gain \"%s\" not found for channel %d.\nAvailable gains: %s\n") % \
__FUNCTION__ % name % chan % string_vector_to_string(get_##dir##_gain_names(chan))).str());
/***********************************************************************
* Helper methods
**********************************************************************/
static void do_samp_rate_warning_message(
double target_rate,
double actual_rate,
const std::string &xx
){
static const double max_allowed_error = 1.0; //Sps
if (std::abs(target_rate - actual_rate) > max_allowed_error){
UHD_MSG(warning) << boost::format(
"The hardware does not support the requested %s sample rate:\n"
"Target sample rate: %f MSps\n"
"Actual sample rate: %f MSps\n"
) % xx % (target_rate/1e6) % (actual_rate/1e6);
}
}
/*static void do_tune_freq_results_message(
const tune_request_t &tune_req,
const tune_result_t &tune_result,
double actual_freq,
const std::string &xx
){
const double target_freq = tune_req.target_freq;
const double clipped_target_freq = tune_result.clipped_rf_freq;
const double target_rf_freq = tune_result.target_rf_freq;
const double actual_rf_freq = tune_result.actual_rf_freq;
const double target_dsp_freq = tune_result.target_dsp_freq;
const double actual_dsp_freq = tune_result.actual_dsp_freq;
if (tune_req.rf_freq_policy == tune_request_t::POLICY_MANUAL) return;
if (tune_req.dsp_freq_policy == tune_request_t::POLICY_MANUAL) return;
bool requested_freq_success = uhd::math::frequencies_are_equal(target_freq, clipped_target_freq);
bool target_freq_success = uhd::math::frequencies_are_equal(clipped_target_freq, actual_freq);
bool rf_lo_tune_success = uhd::math::frequencies_are_equal(target_rf_freq, actual_rf_freq);
bool dsp_tune_success = uhd::math::frequencies_are_equal(target_dsp_freq, actual_dsp_freq);
if(requested_freq_success and target_freq_success and rf_lo_tune_success
and dsp_tune_success) {
UHD_MSG(status) << boost::format(
"Successfully tuned to %f MHz\n\n")
% (actual_freq / 1e6);
} else {
boost::format base_message ("Tune Request: %f MHz\n");
base_message % (target_freq / 1e6);
std::string results_string = base_message.str();
if(requested_freq_success and (not rf_lo_tune_success)) {
boost::format rf_lo_message(
" The RF LO does not support the requested frequency:\n"
" Requested LO Frequency: %f MHz\n"
" RF LO Result: %f MHz\n"
" Attempted to use the DSP to reach the requested frequency:\n"
" Desired DSP Frequency: %f MHz\n"
" DSP Result: %f MHz\n"
" Successfully tuned to %f MHz\n\n");
rf_lo_message % (target_rf_freq / 1e6) % (actual_rf_freq / 1e6)
% (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6)
% (actual_freq / 1e6);
results_string += rf_lo_message.str();
UHD_MSG(status) << results_string;
return;
}
if(not requested_freq_success) {
boost::format failure_message(
" The requested %s frequency is outside of the system range, and has been clipped:\n"
" Target Frequency: %f MHz\n"
" Clipped Target Frequency: %f MHz\n");
failure_message % xx % (target_freq / 1e6) % (clipped_target_freq / 1e6);
results_string += failure_message.str();
}
if(not rf_lo_tune_success) {
boost::format rf_lo_message(
" The RF LO does not support the requested frequency:\n"
" Requested LO Frequency: %f MHz\n"
" RF LO Result: %f MHz\n"
" Attempted to use the DSP to reach the requested frequency:\n"
" Desired DSP Frequency: %f MHz\n"
" DSP Result: %f MHz\n");
rf_lo_message % (target_rf_freq / 1e6) % (actual_rf_freq / 1e6)
% (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6);
results_string += rf_lo_message.str();
} else if(not dsp_tune_success) {
boost::format dsp_message(
" The DSP does not support the requested frequency:\n"
" Requested DSP Frequency: %f MHz\n"
" DSP Result: %f MHz\n");
dsp_message % (target_dsp_freq / 1e6) % (actual_dsp_freq / 1e6);
results_string += dsp_message.str();
}
if(target_freq_success) {
boost::format success_message(
" Successfully tuned to %f MHz\n\n");
success_message % (actual_freq / 1e6);
results_string += success_message.str();
} else {
boost::format failure_message(
" Failed to tune to target frequency\n"
" Target Frequency: %f MHz\n"
" Actual Frequency: %f MHz\n\n");
failure_message % (clipped_target_freq / 1e6) % (actual_freq / 1e6);
results_string += failure_message.str();
}
UHD_MSG(warning) << results_string << std::endl;
}
}*/
/*! The CORDIC can be used to shift the baseband below / past the tunable
* limits of the actual RF front-end. The baseband filter, located on the
* daughterboard, however, limits the useful instantaneous bandwidth. We
* allow the user to tune to the edge of the filter, where the roll-off
* begins. This prevents the user from tuning past the point where less
* than half of the spectrum would be useful. */
static meta_range_t make_overall_tune_range(
const meta_range_t &fe_range,
const meta_range_t &dsp_range,
const double bw
){
meta_range_t range;
BOOST_FOREACH(const range_t &sub_range, fe_range){
range.push_back(range_t(
sub_range.start() + std::max(dsp_range.start(), -bw/2),
sub_range.stop() + std::min(dsp_range.stop(), bw/2),
dsp_range.step()
));
}
return range;
}
/***********************************************************************
* Gain helper functions
**********************************************************************/
static double get_gain_value(property_tree::sptr subtree){
return subtree->access("value").get();
}
static void set_gain_value(property_tree::sptr subtree, const double gain){
subtree->access("value").set(gain);
}
static meta_range_t get_gain_range(property_tree::sptr subtree){
return subtree->access("range").get();
}
static gain_fcns_t make_gain_fcns_from_subtree(property_tree::sptr subtree){
gain_fcns_t gain_fcns;
gain_fcns.get_range = boost::bind(&get_gain_range, subtree);
gain_fcns.get_value = boost::bind(&get_gain_value, subtree);
gain_fcns.set_value = boost::bind(&set_gain_value, subtree, _1);
return gain_fcns;
}
/***********************************************************************
* Tune Helper Functions
**********************************************************************/
static const double RX_SIGN = +1.0;
static const double TX_SIGN = -1.0;
static tune_result_t tune_xx_subdev_and_dsp(
const double xx_sign,
property_tree::sptr dsp_subtree,
property_tree::sptr rf_fe_subtree,
const tune_request_t &tune_request
){
//------------------------------------------------------------------
//-- calculate the tunable frequency ranges of the system
//------------------------------------------------------------------
freq_range_t tune_range = make_overall_tune_range(
rf_fe_subtree->access("freq/range").get(),
dsp_subtree->access("freq/range").get(),
rf_fe_subtree->access("bandwidth/value").get()
);
freq_range_t dsp_range = dsp_subtree->access("freq/range").get();
freq_range_t rf_range = rf_fe_subtree->access("freq/range").get();
double clipped_requested_freq = tune_range.clip(tune_request.target_freq);
//------------------------------------------------------------------
//-- If the RF FE requires an LO offset, build it into the tune request
//------------------------------------------------------------------
/*! The automatically calculated LO offset is only used if the
* 'use_lo_offset' field in the daughterboard property tree is set to TRUE,
* and the tune policy is set to AUTO. To use an LO offset normally, the
* user should specify the MANUAL tune policy and lo_offset as part of the
* tune_request. This lo_offset is based on the requirements of the FE, and
* does not reflect a user-requested lo_offset, which is handled later. */
double lo_offset = 0.0;
if (rf_fe_subtree->access("use_lo_offset").get()){
// If the frontend has lo_offset value and range properties, trust it
// for lo_offset
if (rf_fe_subtree->exists("lo_offset/value")) {
lo_offset = rf_fe_subtree->access("lo_offset/value").get();
}
//If the local oscillator will be in the passband, use an offset.
//But constrain the LO offset by the width of the filter bandwidth.
const double rate = dsp_subtree->access("rate/value").get();
const double bw = rf_fe_subtree->access("bandwidth/value").get();
if (bw > rate) lo_offset = std::min((bw - rate)/2, rate/2);
}
//------------------------------------------------------------------
//-- poke the tune request args into the dboard
//------------------------------------------------------------------
if (rf_fe_subtree->exists("tune_args")) {
rf_fe_subtree->access("tune_args").set(tune_request.args);
}
//------------------------------------------------------------------
//-- set the RF frequency depending upon the policy
//------------------------------------------------------------------
double target_rf_freq = 0.0;
switch (tune_request.rf_freq_policy){
case tune_request_t::POLICY_AUTO:
target_rf_freq = clipped_requested_freq + lo_offset;
break;
case tune_request_t::POLICY_MANUAL:
// If the rf_fe understands lo_offset settings, infer the desired
// lo_offset and set it. Side effect: In TVRX2 for example, after
// setting the lo_offset (if_freq) with a POLICY_MANUAL, there is no
// way for the user to automatically get back to default if_freq
// without deconstruct/reconstruct the rf_fe objects.
if (rf_fe_subtree->exists("lo_offset/value")) {
rf_fe_subtree->access("lo_offset/value")
.set(tune_request.rf_freq - tune_request.target_freq);
}
target_rf_freq = rf_range.clip(tune_request.rf_freq);
break;
case tune_request_t::POLICY_NONE:
break; //does not set
}
//------------------------------------------------------------------
//-- Tune the RF frontend
//------------------------------------------------------------------
if (tune_request.rf_freq_policy != tune_request_t::POLICY_NONE) {
rf_fe_subtree->access("freq/value").set(target_rf_freq);
}
const double actual_rf_freq = rf_fe_subtree->access("freq/value").get();
//------------------------------------------------------------------
//-- Set the DSP frequency depending upon the DSP frequency policy.
//------------------------------------------------------------------
double target_dsp_freq = 0.0;
switch (tune_request.dsp_freq_policy) {
case tune_request_t::POLICY_AUTO:
/* If we are using the AUTO tuning policy, then we prevent the
* CORDIC from spinning us outside of the range of the baseband
* filter, regardless of what the user requested. This could happen
* if the user requested a center frequency so far outside of the
* tunable range of the FE that the CORDIC would spin outside the
* filtered baseband. */
target_dsp_freq = actual_rf_freq - clipped_requested_freq;
//invert the sign on the dsp freq for transmit (spinning up vs down)
target_dsp_freq *= xx_sign;
break;
case tune_request_t::POLICY_MANUAL:
/* If the user has specified a manual tune policy, we will allow
* tuning outside of the baseband filter, but will still clip the
* target DSP frequency to within the bounds of the CORDIC to
* prevent undefined behavior (likely an overflow). */
target_dsp_freq = dsp_range.clip(tune_request.dsp_freq);
break;
case tune_request_t::POLICY_NONE:
break; //does not set
}
//------------------------------------------------------------------
//-- Tune the DSP
//------------------------------------------------------------------
if (tune_request.dsp_freq_policy != tune_request_t::POLICY_NONE) {
dsp_subtree->access("freq/value").set(target_dsp_freq);
}
const double actual_dsp_freq = dsp_subtree->access("freq/value").get();
//------------------------------------------------------------------
//-- Load and return the tune result
//------------------------------------------------------------------
tune_result_t tune_result;
tune_result.clipped_rf_freq = clipped_requested_freq;
tune_result.target_rf_freq = target_rf_freq;
tune_result.actual_rf_freq = actual_rf_freq;
tune_result.target_dsp_freq = target_dsp_freq;
tune_result.actual_dsp_freq = actual_dsp_freq;
return tune_result;
}
static double derive_freq_from_xx_subdev_and_dsp(
const double xx_sign,
property_tree::sptr dsp_subtree,
property_tree::sptr rf_fe_subtree
){
//extract actual dsp and IF frequencies
const double actual_rf_freq = rf_fe_subtree->access("freq/value").get();
const double actual_dsp_freq = dsp_subtree->access("freq/value").get();
//invert the sign on the dsp freq for transmit
return actual_rf_freq - actual_dsp_freq * xx_sign;
}
/***********************************************************************
* Multi USRP Implementation
**********************************************************************/
class multi_usrp_impl : public multi_usrp{
public:
multi_usrp_impl(const device_addr_t &addr){
_dev = device::make(addr, device::USRP);
_tree = _dev->get_tree();
_is_device3 = bool(boost::dynamic_pointer_cast(_dev));
if (is_device3()) {
_legacy_compat = rfnoc::legacy_compat::make(get_device3(), addr);
}
}
device::sptr get_device(void){
return _dev;
}
bool is_device3(void) {
return _is_device3;
}
device3::sptr get_device3(void) {
if (not is_device3()) {
throw uhd::type_error("Cannot call get_device3() on a non-generation 3 device.");
}
return boost::dynamic_pointer_cast(_dev);
}
dict get_usrp_rx_info(size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
dict usrp_info;
mboard_eeprom_t mb_eeprom = _tree->access(mb_root(mcp.mboard) / "eeprom").get();
dboard_eeprom_t db_eeprom = _tree->access(rx_rf_fe_root(chan).branch_path().branch_path() / "rx_eeprom").get();
usrp_info["mboard_id"] = _tree->access(mb_root(mcp.mboard) / "name").get();
usrp_info["mboard_name"] = mb_eeprom["name"];
usrp_info["mboard_serial"] = mb_eeprom["serial"];
usrp_info["rx_id"] = db_eeprom.id.to_pp_string();
usrp_info["rx_subdev_name"] = _tree->access(rx_rf_fe_root(chan) / "name").get();
usrp_info["rx_subdev_spec"] = _tree->access(mb_root(mcp.mboard) / "rx_subdev_spec").get().to_string();
usrp_info["rx_serial"] = db_eeprom.serial;
usrp_info["rx_antenna"] = _tree->access(rx_rf_fe_root(chan) / "antenna" / "value").get();
return usrp_info;
}
dict get_usrp_tx_info(size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
dict usrp_info;
mboard_eeprom_t mb_eeprom = _tree->access(mb_root(mcp.mboard) / "eeprom").get();
dboard_eeprom_t db_eeprom = _tree->access(tx_rf_fe_root(chan).branch_path().branch_path() / "tx_eeprom").get();
usrp_info["mboard_id"] = _tree->access(mb_root(mcp.mboard) / "name").get();
usrp_info["mboard_name"] = mb_eeprom["name"];
usrp_info["mboard_serial"] = mb_eeprom["serial"];
usrp_info["tx_id"] = db_eeprom.id.to_pp_string();
usrp_info["tx_subdev_name"] = _tree->access(tx_rf_fe_root(chan) / "name").get();
usrp_info["tx_subdev_spec"] = _tree->access(mb_root(mcp.mboard) / "tx_subdev_spec").get().to_string();
usrp_info["tx_serial"] = db_eeprom.serial;
usrp_info["tx_antenna"] = _tree->access(tx_rf_fe_root(chan) / "antenna" / "value").get();
return usrp_info;
}
/*******************************************************************
* Mboard methods
******************************************************************/
void set_master_clock_rate(double rate, size_t mboard){
if (mboard != ALL_MBOARDS){
if (_tree->exists(mb_root(mboard) / "auto_tick_rate")
and _tree->access(mb_root(mboard) / "auto_tick_rate").get()) {
_tree->access(mb_root(mboard) / "auto_tick_rate").set(false);
UHD_MSG(status) << "Setting master clock rate selection to 'manual'." << std::endl;
}
_tree->access(mb_root(mboard) / "tick_rate").set(rate);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_master_clock_rate(rate, m);
}
}
double get_master_clock_rate(size_t mboard){
return _tree->access(mb_root(mboard) / "tick_rate").get();
}
std::string get_pp_string(void){
std::string buff = str(boost::format(
"%s USRP:\n"
" Device: %s\n"
)
% ((get_num_mboards() > 1)? "Multi" : "Single")
% (_tree->access("/name").get())
);
for (size_t m = 0; m < get_num_mboards(); m++){
buff += str(boost::format(
" Mboard %d: %s\n"
) % m
% (_tree->access(mb_root(m) / "name").get())
);
}
//----------- rx side of life ----------------------------------
for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){
for (; chan < (m + 1)*get_rx_subdev_spec(m).size(); chan++){
buff += str(boost::format(
" RX Channel: %u\n"
" RX DSP: %s\n"
" RX Dboard: %s\n"
" RX Subdev: %s\n"
) % chan
% rx_dsp_root(chan).leaf()
% rx_rf_fe_root(chan).branch_path().branch_path().leaf()
% (_tree->access(rx_rf_fe_root(chan) / "name").get())
);
}
}
//----------- tx side of life ----------------------------------
for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){
for (; chan < (m + 1)*get_tx_subdev_spec(m).size(); chan++){
buff += str(boost::format(
" TX Channel: %u\n"
" TX DSP: %s\n"
" TX Dboard: %s\n"
" TX Subdev: %s\n"
) % chan
% tx_dsp_root(chan).leaf()
% tx_rf_fe_root(chan).branch_path().branch_path().leaf()
% (_tree->access(tx_rf_fe_root(chan) / "name").get())
);
}
}
return buff;
}
std::string get_mboard_name(size_t mboard){
return _tree->access(mb_root(mboard) / "name").get();
}
time_spec_t get_time_now(size_t mboard = 0){
return _tree->access(mb_root(mboard) / "time/now").get();
}
time_spec_t get_time_last_pps(size_t mboard = 0){
return _tree->access(mb_root(mboard) / "time/pps").get();
}
void set_time_now(const time_spec_t &time_spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time/now").set(time_spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_time_now(time_spec, m);
}
}
void set_time_next_pps(const time_spec_t &time_spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time/pps").set(time_spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_time_next_pps(time_spec, m);
}
}
void set_time_unknown_pps(const time_spec_t &time_spec){
UHD_MSG(status) << " 1) catch time transition at pps edge" << std::endl;
boost::system_time end_time = boost::get_system_time() + boost::posix_time::milliseconds(1100);
time_spec_t time_start_last_pps = get_time_last_pps();
while (time_start_last_pps == get_time_last_pps())
{
if (boost::get_system_time() > end_time)
{
throw uhd::runtime_error(
"Board 0 may not be getting a PPS signal!\n"
"No PPS detected within the time interval.\n"
"See the application notes for your device.\n"
);
}
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
UHD_MSG(status) << " 2) set times next pps (synchronously)" << std::endl;
set_time_next_pps(time_spec, ALL_MBOARDS);
boost::this_thread::sleep(boost::posix_time::seconds(1));
//verify that the time registers are read to be within a few RTT
for (size_t m = 1; m < get_num_mboards(); m++){
time_spec_t time_0 = this->get_time_now(0);
time_spec_t time_i = this->get_time_now(m);
if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)){ //10 ms: greater than RTT but not too big
UHD_MSG(warning) << boost::format(
"Detected time deviation between board %d and board 0.\n"
"Board 0 time is %f seconds.\n"
"Board %d time is %f seconds.\n"
) % m % time_0.get_real_secs() % m % time_i.get_real_secs();
}
}
}
bool get_time_synchronized(void){
for (size_t m = 1; m < get_num_mboards(); m++){
time_spec_t time_0 = this->get_time_now(0);
time_spec_t time_i = this->get_time_now(m);
if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)) return false;
}
return true;
}
void set_command_time(const time_spec_t &time_spec, size_t mboard){
if (mboard != ALL_MBOARDS){
if (not _tree->exists(mb_root(mboard) / "time/cmd")){
throw uhd::not_implemented_error("timed command feature not implemented on this hardware");
}
_tree->access(mb_root(mboard) / "time/cmd").set(time_spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_command_time(time_spec, m);
}
}
void clear_command_time(size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time/cmd").set(time_spec_t(0.0));
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
clear_command_time(m);
}
}
void issue_stream_cmd(const stream_cmd_t &stream_cmd, size_t chan){
if (chan != ALL_CHANS){
if (is_device3()) {
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
_legacy_compat->issue_stream_cmd(stream_cmd, mcp.mboard, mcp.chan);
} else {
_tree->access(rx_dsp_root(chan) / "stream_cmd").set(stream_cmd);
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
issue_stream_cmd(stream_cmd, c);
}
}
void set_clock_config(const clock_config_t &clock_config, size_t mboard){
//set the reference source...
std::string clock_source;
switch(clock_config.ref_source){
case clock_config_t::REF_INT: clock_source = "internal"; break;
case clock_config_t::REF_SMA: clock_source = "external"; break;
case clock_config_t::REF_MIMO: clock_source = "mimo"; break;
default: clock_source = "unknown";
}
this->set_clock_source(clock_source, mboard);
//set the time source
std::string time_source;
switch(clock_config.pps_source){
case clock_config_t::PPS_INT: time_source = "internal"; break;
case clock_config_t::PPS_SMA: time_source = "external"; break;
case clock_config_t::PPS_MIMO: time_source = "mimo"; break;
default: time_source = "unknown";
}
if (time_source == "external" and clock_config.pps_polarity == clock_config_t::PPS_NEG) time_source = "_external_";
this->set_time_source(time_source, mboard);
}
void set_time_source(const std::string &source, const size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time_source" / "value").set(source);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
this->set_time_source(source, m);
}
}
std::string get_time_source(const size_t mboard){
return _tree->access(mb_root(mboard) / "time_source" / "value").get();
}
std::vector get_time_sources(const size_t mboard){
return _tree->access >(mb_root(mboard) / "time_source" / "options").get();
}
void set_clock_source(const std::string &source, const size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "clock_source" / "value").set(source);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
this->set_clock_source(source, m);
}
}
std::string get_clock_source(const size_t mboard){
return _tree->access(mb_root(mboard) / "clock_source" / "value").get();
}
std::vector get_clock_sources(const size_t mboard){
return _tree->access >(mb_root(mboard) / "clock_source" / "options").get();
}
void set_clock_source_out(const bool enb, const size_t mboard)
{
if (mboard != ALL_MBOARDS)
{
if (_tree->exists(mb_root(mboard) / "clock_source" / "output"))
{
_tree->access(mb_root(mboard) / "clock_source" / "output").set(enb);
}
else
{
throw uhd::runtime_error("multi_usrp::set_clock_source_out - not supported on this device");
}
return;
}
for (size_t m = 0; m < get_num_mboards(); m++)
{
this->set_clock_source_out(enb, m);
}
}
void set_time_source_out(const bool enb, const size_t mboard)
{
if (mboard != ALL_MBOARDS)
{
if (_tree->exists(mb_root(mboard) / "time_source" / "output"))
{
_tree->access(mb_root(mboard) / "time_source" / "output").set(enb);
}
else
{
throw uhd::runtime_error("multi_usrp::set_time_source_out - not supported on this device");
}
return;
}
for (size_t m = 0; m < get_num_mboards(); m++)
{
this->set_time_source_out(enb, m);
}
}
size_t get_num_mboards(void){
return _tree->list("/mboards").size();
}
sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard){
return _tree->access(mb_root(mboard) / "sensors" / name).get();
}
std::vector get_mboard_sensor_names(size_t mboard){
return _tree->list(mb_root(mboard) / "sensors");
}
void set_user_register(const boost::uint8_t addr, const boost::uint32_t data, size_t mboard){
if (mboard != ALL_MBOARDS){
typedef std::pair user_reg_t;
_tree->access(mb_root(mboard) / "user/regs").set(user_reg_t(addr, data));
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_user_register(addr, data, m);
}
}
/*******************************************************************
* RX methods
******************************************************************/
rx_streamer::sptr get_rx_stream(const stream_args_t &args) {
_check_link_rate(args, false);
if (is_device3()) {
return _legacy_compat->get_rx_stream(args);
}
return this->get_device()->get_rx_stream(args);
}
void set_rx_subdev_spec(const subdev_spec_t &spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "rx_subdev_spec").set(spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_rx_subdev_spec(spec, m);
}
}
subdev_spec_t get_rx_subdev_spec(size_t mboard)
{
subdev_spec_t spec = _tree->access(mb_root(mboard) / "rx_subdev_spec").get();
if (spec.empty())
{
try
{
const std::string db_name = _tree->list(mb_root(mboard) / "dboards").at(0);
const std::string fe_name = _tree->list(mb_root(mboard) / "dboards" / db_name / "rx_frontends").at(0);
spec.push_back(subdev_spec_pair_t(db_name, fe_name));
_tree->access(mb_root(mboard) / "rx_subdev_spec").set(spec);
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::get_rx_subdev_spec(%u) failed to make default spec - %s") % mboard % e.what()));
}
UHD_MSG(status) << "Selecting default RX front end spec: " << spec.to_pp_string() << std::endl;
}
return spec;
}
size_t get_rx_num_channels(void){
size_t sum = 0;
for (size_t m = 0; m < get_num_mboards(); m++){
sum += get_rx_subdev_spec(m).size();
}
return sum;
}
std::string get_rx_subdev_name(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "name").get();
}
void set_rx_rate(double rate, size_t chan){
if (chan != ALL_CHANS){
_tree->access(rx_dsp_root(chan) / "rate" / "value").set(rate);
do_samp_rate_warning_message(rate, get_rx_rate(chan), "RX");
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
set_rx_rate(rate, c);
}
}
double get_rx_rate(size_t chan){
return _tree->access(rx_dsp_root(chan) / "rate" / "value").get();
}
meta_range_t get_rx_rates(size_t chan){
return _tree->access(rx_dsp_root(chan) / "rate" / "range").get();
}
tune_result_t set_rx_freq(const tune_request_t &tune_request, size_t chan){
tune_result_t result = tune_xx_subdev_and_dsp(RX_SIGN,
_tree->subtree(rx_dsp_root(chan)),
_tree->subtree(rx_rf_fe_root(chan)),
tune_request);
//do_tune_freq_results_message(tune_request, result, get_rx_freq(chan), "RX");
return result;
}
double get_rx_freq(size_t chan){
return derive_freq_from_xx_subdev_and_dsp(RX_SIGN, _tree->subtree(rx_dsp_root(chan)), _tree->subtree(rx_rf_fe_root(chan)));
}
freq_range_t get_rx_freq_range(size_t chan){
return make_overall_tune_range(
_tree->access(rx_rf_fe_root(chan) / "freq" / "range").get(),
_tree->access(rx_dsp_root(chan) / "freq" / "range").get(),
this->get_rx_bandwidth(chan)
);
}
freq_range_t get_fe_rx_freq_range(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "freq" / "range").get();
}
std::vector get_rx_lo_names(size_t chan = 0){
std::vector lo_names;
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
BOOST_FOREACH(const std::string &name, _tree->list(rx_rf_fe_root(chan) / "los")) {
lo_names.push_back(name);
}
}
return lo_names;
}
void set_rx_lo_source(const std::string &src, const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) {
//Special value ALL_LOS support atomically sets the source for all LOs
_tree->access(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "value").set(src);
} else {
BOOST_FOREACH(const std::string &n, _tree->list(rx_rf_fe_root(chan) / "los")) {
this->set_rx_lo_source(src, n, chan);
}
}
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
_tree->access(rx_rf_fe_root(chan) / "los" / name / "source" / "value").set(src);
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
throw uhd::runtime_error("This device does not support manual configuration of LOs");
}
}
const std::string get_rx_lo_source(const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
//Special value ALL_LOS support atomically sets the source for all LOs
return _tree->access(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "value").get();
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
return _tree->access(rx_rf_fe_root(chan) / "los" / name / "source" / "value").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s) then it can only be internal
return "internal";
}
}
std::vector get_rx_lo_sources(const std::string &name = ALL_LOS, size_t chan = 0) {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) {
//Special value ALL_LOS support atomically sets the source for all LOs
return _tree->access< std::vector >(rx_rf_fe_root(chan) / "los" / ALL_LOS / "source" / "options").get();
} else {
return std::vector();
}
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
return _tree->access< std::vector >(rx_rf_fe_root(chan) / "los" / name / "source" / "options").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s) then it can only be internal
return std::vector(1, "internal");
}
}
void set_rx_lo_export_enabled(bool enabled, const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
if (_tree->exists(rx_rf_fe_root(chan) / "los" / ALL_LOS)) {
//Special value ALL_LOS support atomically sets the source for all LOs
_tree->access(rx_rf_fe_root(chan) / "los" / ALL_LOS / "export").set(enabled);
} else {
BOOST_FOREACH(const std::string &n, _tree->list(rx_rf_fe_root(chan) / "los")) {
this->set_rx_lo_export_enabled(enabled, n, chan);
}
}
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
_tree->access(rx_rf_fe_root(chan) / "los" / name / "export").set(enabled);
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
throw uhd::runtime_error("This device does not support manual configuration of LOs");
}
}
bool get_rx_lo_export_enabled(const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
//Special value ALL_LOS support atomically sets the source for all LOs
return _tree->access(rx_rf_fe_root(chan) / "los" / ALL_LOS / "export").get();
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
return _tree->access(rx_rf_fe_root(chan) / "los" / name / "export").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// If the daughterboard doesn't expose it's LO(s), assume it cannot export
return false;
}
}
double set_rx_lo_freq(double freq, const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error("LO frequency must be set for each stage individually");
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
_tree->access(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").set(freq);
return _tree->access(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
throw uhd::runtime_error("This device does not support manual configuration of LOs");
}
}
double get_rx_lo_freq(const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error("LO frequency must be retrieved for each stage individually");
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
return _tree->access(rx_rf_fe_root(chan) / "los" / name / "freq" / "value").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// Return actual RF frequency if the daughterboard doesn't expose it's LO(s)
return _tree->access(rx_rf_fe_root(chan) / "freq" /" value").get();
}
}
freq_range_t get_rx_lo_freq_range(const std::string &name = ALL_LOS, size_t chan = 0){
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
if (name == ALL_LOS) {
throw uhd::runtime_error("LO frequency range must be retrieved for each stage individually");
} else {
if (_tree->exists(rx_rf_fe_root(chan) / "los")) {
return _tree->access(rx_rf_fe_root(chan) / "los" / name / "freq" / "range").get();
} else {
throw uhd::runtime_error("Could not find LO stage " + name);
}
}
} else {
// Return the actual RF range if the daughterboard doesn't expose it's LO(s)
return _tree->access(rx_rf_fe_root(chan) / "freq" / "range").get();
}
}
void set_rx_gain(double gain, const std::string &name, size_t chan){
/* Check if any AGC mode is enable and if so warn the user */
if (chan != ALL_CHANS) {
if (_tree->exists(rx_rf_fe_root(chan) / "gain" / "agc")) {
bool agc = _tree->access(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").get();
if(agc) {
UHD_MSG(warning) << "AGC enabled for this channel. Setting will be ignored." << std::endl;
}
}
} else {
for (size_t c = 0; c < get_rx_num_channels(); c++){
if (_tree->exists(rx_rf_fe_root(c) / "gain" / "agc")) {
bool agc = _tree->access(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").get();
if(agc) {
UHD_MSG(warning) << "AGC enabled for this channel. Setting will be ignored." << std::endl;
}
}
}
}
/* Apply gain setting.
* If device is in AGC mode it will ignore the setting. */
try {
return rx_gain_group(chan)->set_value(gain, name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,rx);
}
}
void set_normalized_rx_gain(double gain, size_t chan = 0)
{
if (gain > 1.0 || gain < 0.0) {
throw uhd::runtime_error("Normalized gain out of range, must be in [0, 1].");
}
gain_range_t gain_range = get_rx_gain_range(ALL_GAINS, chan);
double abs_gain = (gain * (gain_range.stop() - gain_range.start())) + gain_range.start();
set_rx_gain(abs_gain, ALL_GAINS, chan);
}
void set_rx_agc(bool enable, size_t chan = 0)
{
if (chan != ALL_CHANS){
if (_tree->exists(rx_rf_fe_root(chan) / "gain" / "agc" / "enable")) {
_tree->access(rx_rf_fe_root(chan) / "gain" / "agc" / "enable").set(enable);
} else {
UHD_MSG(warning) << "AGC is not available on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_agc(enable, c);
}
}
double get_rx_gain(const std::string &name, size_t chan){
try {
return rx_gain_group(chan)->get_value(name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,rx);
}
}
double get_normalized_rx_gain(size_t chan)
{
gain_range_t gain_range = get_rx_gain_range(ALL_GAINS, chan);
double gain_range_width = gain_range.stop() - gain_range.start();
// In case we have a device without a range of gains:
if (gain_range_width == 0.0) {
return 0;
}
double norm_gain = (get_rx_gain(ALL_GAINS, chan) - gain_range.start()) / gain_range_width;
// Avoid rounding errors:
if (norm_gain > 1.0) return 1.0;
if (norm_gain < 0.0) return 0.0;
return norm_gain;
}
gain_range_t get_rx_gain_range(const std::string &name, size_t chan){
try {
return rx_gain_group(chan)->get_range(name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,rx);
}
}
std::vector get_rx_gain_names(size_t chan){
return rx_gain_group(chan)->get_names();
}
void set_rx_antenna(const std::string &ant, size_t chan){
_tree->access(rx_rf_fe_root(chan) / "antenna" / "value").set(ant);
}
std::string get_rx_antenna(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "antenna" / "value").get();
}
std::vector get_rx_antennas(size_t chan){
return _tree->access >(rx_rf_fe_root(chan) / "antenna" / "options").get();
}
void set_rx_bandwidth(double bandwidth, size_t chan){
_tree->access(rx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth);
}
double get_rx_bandwidth(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "bandwidth" / "value").get();
}
meta_range_t get_rx_bandwidth_range(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "bandwidth" / "range").get();
}
dboard_iface::sptr get_rx_dboard_iface(size_t chan){
return _tree->access(rx_rf_fe_root(chan).branch_path().branch_path() / "iface").get();
}
sensor_value_t get_rx_sensor(const std::string &name, size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "sensors" / name).get();
}
std::vector get_rx_sensor_names(size_t chan){
return _tree->list(rx_rf_fe_root(chan) / "sensors");
}
void set_rx_dc_offset(const bool enb, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(rx_fe_root(chan) / "dc_offset" / "enable")) {
_tree->access(rx_fe_root(chan) / "dc_offset" / "enable").set(enb);
} else if (_tree->exists(rx_rf_fe_root(chan) / "dc_offset" / "enable")) {
/*For B2xx devices the dc-offset correction is implemented in the rf front-end*/
_tree->access(rx_rf_fe_root(chan) / "dc_offset" / "enable").set(enb);
} else {
UHD_MSG(warning) << "Setting DC offset compensation is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_dc_offset(enb, c);
}
}
void set_rx_dc_offset(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(rx_fe_root(chan) / "dc_offset" / "value")) {
_tree->access >(rx_fe_root(chan) / "dc_offset" / "value").set(offset);
} else {
UHD_MSG(warning) << "Setting DC offset is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_dc_offset(offset, c);
}
}
void set_rx_iq_balance(const bool enb, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(rx_rf_fe_root(chan) / "iq_balance" / "enable")) {
_tree->access(rx_rf_fe_root(chan) / "iq_balance" / "enable").set(enb);
} else {
UHD_MSG(warning) << "Setting IQ imbalance compensation is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_iq_balance(enb, c);
}
}
void set_rx_iq_balance(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(rx_fe_root(chan) / "iq_balance" / "value")) {
_tree->access >(rx_fe_root(chan) / "iq_balance" / "value").set(offset);
} else {
UHD_MSG(warning) << "Setting IQ balance is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_iq_balance(offset, c);
}
}
std::vector get_filter_names(const std::string &search_mask)
{
std::vector ret;
for (size_t chan = 0; chan < get_rx_num_channels(); chan++){
if (_tree->exists(rx_rf_fe_root(chan) / "filters")) {
std::vector names = _tree->list(rx_rf_fe_root(chan) / "filters");
for(size_t i = 0; i < names.size(); i++)
{
std::string name = rx_rf_fe_root(chan) / "filters" / names[i];
if((search_mask.empty()) or boost::contains(name, search_mask)) {
ret.push_back(name);
}
}
}
if (_tree->exists(rx_dsp_root(chan) / "filters")) {
std::vector names = _tree->list(rx_dsp_root(chan) / "filters");
for(size_t i = 0; i < names.size(); i++)
{
std::string name = rx_dsp_root(chan) / "filters" / names[i];
if((search_mask.empty()) or (boost::contains(name, search_mask))) {
ret.push_back(name);
}
}
}
}
for (size_t chan = 0; chan < get_tx_num_channels(); chan++){
if (_tree->exists(tx_rf_fe_root(chan) / "filters")) {
std::vector names = _tree->list(tx_rf_fe_root(chan) / "filters");
for(size_t i = 0; i < names.size(); i++)
{
std::string name = tx_rf_fe_root(chan) / "filters" / names[i];
if((search_mask.empty()) or (boost::contains(name, search_mask))) {
ret.push_back(name);
}
}
}
if (_tree->exists(rx_dsp_root(chan) / "filters")) {
std::vector names = _tree->list(tx_dsp_root(chan) / "filters");
for(size_t i = 0; i < names.size(); i++)
{
std::string name = tx_dsp_root(chan) / "filters" / names[i];
if((search_mask.empty()) or (boost::contains(name, search_mask))) {
ret.push_back(name);
}
}
}
}
return ret;
}
filter_info_base::sptr get_filter(const std::string &path)
{
std::vector possible_names = get_filter_names("");
std::vector::iterator it;
it = find(possible_names.begin(), possible_names.end(), path);
if (it == possible_names.end()) {
throw uhd::runtime_error("Attempting to get non-existing filter: "+path);
}
return _tree->access(path / "value").get();
}
void set_filter(const std::string &path, filter_info_base::sptr filter)
{
std::vector possible_names = get_filter_names("");
std::vector::iterator it;
it = find(possible_names.begin(), possible_names.end(), path);
if (it == possible_names.end()) {
throw uhd::runtime_error("Attempting to set non-existing filter: "+path);
}
_tree->access(path / "value").set(filter);
}
/*******************************************************************
* TX methods
******************************************************************/
tx_streamer::sptr get_tx_stream(const stream_args_t &args) {
_check_link_rate(args, true);
if (is_device3()) {
return _legacy_compat->get_tx_stream(args);
}
return this->get_device()->get_tx_stream(args);
}
void set_tx_subdev_spec(const subdev_spec_t &spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "tx_subdev_spec").set(spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_tx_subdev_spec(spec, m);
}
}
subdev_spec_t get_tx_subdev_spec(size_t mboard)
{
subdev_spec_t spec = _tree->access(mb_root(mboard) / "tx_subdev_spec").get();
if (spec.empty())
{
try
{
const std::string db_name = _tree->list(mb_root(mboard) / "dboards").at(0);
const std::string fe_name = _tree->list(mb_root(mboard) / "dboards" / db_name / "tx_frontends").at(0);
spec.push_back(subdev_spec_pair_t(db_name, fe_name));
_tree->access(mb_root(mboard) / "tx_subdev_spec").set(spec);
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::get_tx_subdev_spec(%u) failed to make default spec - %s") % mboard % e.what()));
}
UHD_MSG(status) << "Selecting default TX front end spec: " << spec.to_pp_string() << std::endl;
}
return spec;
}
size_t get_tx_num_channels(void){
size_t sum = 0;
for (size_t m = 0; m < get_num_mboards(); m++){
sum += get_tx_subdev_spec(m).size();
}
return sum;
}
std::string get_tx_subdev_name(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "name").get();
}
void set_tx_rate(double rate, size_t chan){
if (chan != ALL_CHANS){
_tree->access(tx_dsp_root(chan) / "rate" / "value").set(rate);
do_samp_rate_warning_message(rate, get_tx_rate(chan), "TX");
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
set_tx_rate(rate, c);
}
}
double get_tx_rate(size_t chan){
return _tree->access(tx_dsp_root(chan) / "rate" / "value").get();
}
meta_range_t get_tx_rates(size_t chan){
return _tree->access(tx_dsp_root(chan) / "rate" / "range").get();
}
tune_result_t set_tx_freq(const tune_request_t &tune_request, size_t chan){
tune_result_t result = tune_xx_subdev_and_dsp(TX_SIGN,
_tree->subtree(tx_dsp_root(chan)),
_tree->subtree(tx_rf_fe_root(chan)),
tune_request);
//do_tune_freq_results_message(tune_request, result, get_tx_freq(chan), "TX");
return result;
}
double get_tx_freq(size_t chan){
return derive_freq_from_xx_subdev_and_dsp(TX_SIGN, _tree->subtree(tx_dsp_root(chan)), _tree->subtree(tx_rf_fe_root(chan)));
}
freq_range_t get_tx_freq_range(size_t chan){
return make_overall_tune_range(
_tree->access(tx_rf_fe_root(chan) / "freq" / "range").get(),
_tree->access(tx_dsp_root(chan) / "freq" / "range").get(),
this->get_tx_bandwidth(chan)
);
}
freq_range_t get_fe_tx_freq_range(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "freq" / "range").get();
}
void set_tx_gain(double gain, const std::string &name, size_t chan){
try {
return tx_gain_group(chan)->set_value(gain, name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,tx);
}
}
void set_normalized_tx_gain(double gain, size_t chan = 0)
{
if (gain > 1.0 || gain < 0.0) {
throw uhd::runtime_error("Normalized gain out of range, must be in [0, 1].");
}
gain_range_t gain_range = get_tx_gain_range(ALL_GAINS, chan);
double abs_gain = (gain * (gain_range.stop() - gain_range.start())) + gain_range.start();
set_tx_gain(abs_gain, ALL_GAINS, chan);
}
double get_tx_gain(const std::string &name, size_t chan){
try {
return tx_gain_group(chan)->get_value(name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,tx);
}
}
double get_normalized_tx_gain(size_t chan)
{
gain_range_t gain_range = get_tx_gain_range(ALL_GAINS, chan);
double gain_range_width = gain_range.stop() - gain_range.start();
// In case we have a device without a range of gains:
if (gain_range_width == 0.0) {
return 0.0;
}
double norm_gain = (get_rx_gain(ALL_GAINS, chan) - gain_range.start()) / gain_range_width;
// Avoid rounding errors:
if (norm_gain > 1.0) return 1.0;
if (norm_gain < 0.0) return 0.0;
return norm_gain;
}
gain_range_t get_tx_gain_range(const std::string &name, size_t chan){
try {
return tx_gain_group(chan)->get_range(name);
} catch (uhd::key_error &) {
THROW_GAIN_NAME_ERROR(name,chan,tx);
}
}
std::vector get_tx_gain_names(size_t chan){
return tx_gain_group(chan)->get_names();
}
void set_tx_antenna(const std::string &ant, size_t chan){
_tree->access(tx_rf_fe_root(chan) / "antenna" / "value").set(ant);
}
std::string get_tx_antenna(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "antenna" / "value").get();
}
std::vector get_tx_antennas(size_t chan){
return _tree->access >(tx_rf_fe_root(chan) / "antenna" / "options").get();
}
void set_tx_bandwidth(double bandwidth, size_t chan){
_tree->access(tx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth);
}
double get_tx_bandwidth(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "bandwidth" / "value").get();
}
meta_range_t get_tx_bandwidth_range(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "bandwidth" / "range").get();
}
dboard_iface::sptr get_tx_dboard_iface(size_t chan){
return _tree->access(tx_rf_fe_root(chan).branch_path().branch_path() / "iface").get();
}
sensor_value_t get_tx_sensor(const std::string &name, size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "sensors" / name).get();
}
std::vector get_tx_sensor_names(size_t chan){
return _tree->list(tx_rf_fe_root(chan) / "sensors");
}
void set_tx_dc_offset(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(tx_fe_root(chan) / "dc_offset" / "value")) {
_tree->access >(tx_fe_root(chan) / "dc_offset" / "value").set(offset);
} else {
UHD_MSG(warning) << "Setting DC offset is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
this->set_tx_dc_offset(offset, c);
}
}
void set_tx_iq_balance(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
if (_tree->exists(tx_fe_root(chan) / "iq_balance" / "value")) {
_tree->access >(tx_fe_root(chan) / "iq_balance" / "value").set(offset);
} else {
UHD_MSG(warning) << "Setting IQ balance is not possible on this device." << std::endl;
}
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
this->set_tx_iq_balance(offset, c);
}
}
/*******************************************************************
* GPIO methods
******************************************************************/
std::vector get_gpio_banks(const size_t mboard)
{
std::vector banks;
if (_tree->exists(mb_root(mboard) / "gpio"))
{
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mboard) / "gpio"))
{
banks.push_back(name);
}
}
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mboard) / "dboards"))
{
banks.push_back("RX"+name);
banks.push_back("TX"+name);
}
return banks;
}
void set_gpio_attr(const std::string &bank, const std::string &attr, const boost::uint32_t value, const boost::uint32_t mask, const size_t mboard)
{
if (_tree->exists(mb_root(mboard) / "gpio" / bank))
{
const boost::uint32_t current = _tree->access(mb_root(mboard) / "gpio" / bank / attr).get();
const boost::uint32_t new_value = (current & ~mask) | (value & mask);
_tree->access(mb_root(mboard) / "gpio" / bank / attr).set(new_value);
return;
}
if (bank.size() > 2 and bank[1] == 'X')
{
const std::string name = bank.substr(2);
const dboard_iface::unit_t unit = (bank[0] == 'R')? dboard_iface::UNIT_RX : dboard_iface::UNIT_TX;
dboard_iface::sptr iface = _tree->access(mb_root(mboard) / "dboards" / name / "iface").get();
if (attr == "CTRL") iface->set_pin_ctrl(unit, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "DDR") iface->set_gpio_ddr(unit, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "OUT") iface->set_gpio_out(unit, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "ATR_0X") iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "ATR_RX") iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "ATR_TX") iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, boost::uint16_t(value), boost::uint16_t(mask));
if (attr == "ATR_XX") iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, boost::uint16_t(value), boost::uint16_t(mask));
}
}
boost::uint32_t get_gpio_attr(const std::string &bank, const std::string &attr, const size_t mboard)
{
if (_tree->exists(mb_root(mboard) / "gpio" / bank))
{
return boost::uint32_t(_tree->access(mb_root(mboard) / "gpio" / bank / attr).get());
}
if (bank.size() > 2 and bank[1] == 'X')
{
const std::string name = bank.substr(2);
const dboard_iface::unit_t unit = (bank[0] == 'R')? dboard_iface::UNIT_RX : dboard_iface::UNIT_TX;
dboard_iface::sptr iface = _tree->access(mb_root(mboard) / "dboards" / name / "iface").get();
if (attr == "CTRL") return iface->get_pin_ctrl(unit);
if (attr == "DDR") return iface->get_gpio_ddr(unit);
if (attr == "OUT") return iface->get_gpio_out(unit);
if (attr == "ATR_0X") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_IDLE);
if (attr == "ATR_RX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY);
if (attr == "ATR_TX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY);
if (attr == "ATR_XX") return iface->get_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX);
if (attr == "READBACK") return iface->read_gpio(unit);
}
return 0;
}
void write_register(const std::string &path, const boost::uint32_t field, const boost::uint64_t value, const size_t mboard)
{
if (_tree->exists(mb_root(mboard) / "registers"))
{
uhd::soft_regmap_accessor_t::sptr accessor =
_tree->access(mb_root(mboard) / "registers").get();
uhd::soft_register_base& reg = accessor->lookup(path);
if (not reg.is_writable()) {
throw uhd::runtime_error("multi_usrp::write_register - register not writable: " + path);
}
switch (reg.get_bitwidth()) {
case 16:
if (reg.is_readable())
uhd::soft_register_base::cast(reg).write(field, static_cast(value));
else
uhd::soft_register_base::cast(reg).write(field, static_cast(value));
break;
case 32:
if (reg.is_readable())
uhd::soft_register_base::cast(reg).write(field, static_cast(value));
else
uhd::soft_register_base::cast(reg).write(field, static_cast(value));
break;
case 64:
if (reg.is_readable())
uhd::soft_register_base::cast(reg).write(field, value);
else
uhd::soft_register_base::cast(reg).write(field, value);
break;
default:
throw uhd::assertion_error("multi_usrp::write_register - register has invalid bitwidth");
}
} else {
throw uhd::not_implemented_error("multi_usrp::write_register - register IO not supported for this device");
}
}
boost::uint64_t read_register(const std::string &path, const boost::uint32_t field, const size_t mboard)
{
if (_tree->exists(mb_root(mboard) / "registers"))
{
uhd::soft_regmap_accessor_t::sptr accessor =
_tree->access(mb_root(mboard) / "registers").get();
uhd::soft_register_base& reg = accessor->lookup(path);
if (not reg.is_readable()) {
throw uhd::runtime_error("multi_usrp::read_register - register not readable: " + path);
}
switch (reg.get_bitwidth()) {
case 16:
if (reg.is_writable())
return static_cast(uhd::soft_register_base::cast(reg).read(field));
else
return static_cast(uhd::soft_register_base::cast(reg).read(field));
break;
case 32:
if (reg.is_writable())
return static_cast(uhd::soft_register_base::cast(reg).read(field));
else
return static_cast(uhd::soft_register_base::cast(reg).read(field));
break;
case 64:
if (reg.is_writable())
return uhd::soft_register_base::cast(reg).read(field);
else
return uhd::soft_register_base::cast(reg).read(field);
break;
default:
throw uhd::assertion_error("multi_usrp::read_register - register has invalid bitwidth: " + path);
}
} else {
throw uhd::not_implemented_error("multi_usrp::read_register - register IO not supported for this device");
}
}
std::vector enumerate_registers(const size_t mboard)
{
if (_tree->exists(mb_root(mboard) / "registers"))
{
uhd::soft_regmap_accessor_t::sptr accessor =
_tree->access(mb_root(mboard) / "registers").get();
return accessor->enumerate();
} else {
return std::vector();
}
}
register_info_t get_register_info(const std::string &path, const size_t mboard = 0)
{
if (_tree->exists(mb_root(mboard) / "registers"))
{
uhd::soft_regmap_accessor_t::sptr accessor =
_tree->access(mb_root(mboard) / "registers").get();
uhd::soft_register_base& reg = accessor->lookup(path);
register_info_t info;
info.bitwidth = reg.get_bitwidth();
info.readable = reg.is_readable();
info.writable = reg.is_writable();
return info;
} else {
throw uhd::not_implemented_error("multi_usrp::read_register - register IO not supported for this device");
}
}
private:
device::sptr _dev;
property_tree::sptr _tree;
bool _is_device3;
uhd::rfnoc::legacy_compat::sptr _legacy_compat;
struct mboard_chan_pair{
size_t mboard, chan;
mboard_chan_pair(void): mboard(0), chan(0){}
};
mboard_chan_pair rx_chan_to_mcp(size_t chan){
mboard_chan_pair mcp;
mcp.chan = chan;
for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){
size_t sss = get_rx_subdev_spec(mcp.mboard).size();
if (mcp.chan < sss) break;
mcp.chan -= sss;
}
if (mcp.mboard >= get_num_mboards())
{
throw uhd::index_error(str(boost::format("multi_usrp: RX channel %u out of range for configured RX frontends") % chan));
}
return mcp;
}
mboard_chan_pair tx_chan_to_mcp(size_t chan){
mboard_chan_pair mcp;
mcp.chan = chan;
for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){
size_t sss = get_tx_subdev_spec(mcp.mboard).size();
if (mcp.chan < sss) break;
mcp.chan -= sss;
}
if (mcp.mboard >= get_num_mboards())
{
throw uhd::index_error(str(boost::format("multi_usrp: TX channel %u out of range for configured TX frontends") % chan));
}
return mcp;
}
fs_path mb_root(const size_t mboard)
{
try
{
const std::string name = _tree->list("/mboards").at(mboard);
return "/mboards/" + name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::mb_root(%u) - %s") % mboard % e.what()));
}
}
fs_path rx_dsp_root(const size_t chan)
{
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
if (is_device3()) {
return _legacy_compat->rx_dsp_root(mcp.mboard, mcp.chan);
}
if (_tree->exists(mb_root(mcp.mboard) / "rx_chan_dsp_mapping")) {
std::vector map = _tree->access >(mb_root(mcp.mboard) / "rx_chan_dsp_mapping").get();
UHD_ASSERT_THROW(map.size() > mcp.chan);
mcp.chan = map[mcp.chan];
}
try
{
const std::string name = _tree->list(mb_root(mcp.mboard) / "rx_dsps").at(mcp.chan);
return mb_root(mcp.mboard) / "rx_dsps" / name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::rx_dsp_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
fs_path tx_dsp_root(const size_t chan)
{
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
if (is_device3()) {
return _legacy_compat->tx_dsp_root(mcp.mboard, mcp.chan);
}
if (_tree->exists(mb_root(mcp.mboard) / "tx_chan_dsp_mapping")) {
std::vector map = _tree->access >(mb_root(mcp.mboard) / "tx_chan_dsp_mapping").get();
UHD_ASSERT_THROW(map.size() > mcp.chan);
mcp.chan = map[mcp.chan];
}
try
{
const std::string name = _tree->list(mb_root(mcp.mboard) / "tx_dsps").at(mcp.chan);
return mb_root(mcp.mboard) / "tx_dsps" / name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::tx_dsp_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
fs_path rx_fe_root(const size_t chan)
{
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
if (is_device3()) {
return _legacy_compat->rx_fe_root(mcp.mboard, mcp.chan);
}
try
{
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "rx_frontends" / spec.db_name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::rx_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
fs_path tx_fe_root(const size_t chan)
{
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
if (is_device3()) {
return _legacy_compat->tx_fe_root(mcp.mboard, mcp.chan);
}
try
{
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "tx_frontends" / spec.db_name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::tx_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
fs_path rx_rf_fe_root(const size_t chan)
{
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
try
{
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "dboards" / spec.db_name / "rx_frontends" / spec.sd_name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::rx_rf_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
fs_path tx_rf_fe_root(const size_t chan)
{
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
try
{
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "dboards" / spec.db_name / "tx_frontends" / spec.sd_name;
}
catch(const std::exception &e)
{
throw uhd::index_error(str(boost::format("multi_usrp::tx_rf_fe_root(%u) - mcp(%u) - %s") % chan % mcp.chan % e.what()));
}
}
gain_group::sptr rx_gain_group(size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
gain_group::sptr gg = gain_group::make();
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains")){
gg->register_fcns("ADC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains" / name)), 0 /* low prio */);
}
BOOST_FOREACH(const std::string &name, _tree->list(rx_rf_fe_root(chan) / "gains")){
gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(rx_rf_fe_root(chan) / "gains" / name)), 1 /* high prio */);
}
return gg;
}
gain_group::sptr tx_gain_group(size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
gain_group::sptr gg = gain_group::make();
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains")){
gg->register_fcns("DAC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains" / name)), 1 /* high prio */);
}
BOOST_FOREACH(const std::string &name, _tree->list(tx_rf_fe_root(chan) / "gains")){
gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(tx_rf_fe_root(chan) / "gains" / name)), 0 /* low prio */);
}
return gg;
}
//! \param is_tx True for tx
// Assumption is that all mboards use the same link
bool _check_link_rate(const stream_args_t &args, bool is_tx) {
bool link_rate_is_ok = true;
size_t bytes_per_sample = convert::get_bytes_per_item(args.otw_format.empty() ? "sc16" : args.otw_format);
double max_link_rate = 0;
double sum_rate = 0;
BOOST_FOREACH(const size_t chan, args.channels) {
mboard_chan_pair mcp = is_tx ? tx_chan_to_mcp(chan) : rx_chan_to_mcp(chan);
if (_tree->exists(mb_root(mcp.mboard) / "link_max_rate")) {
max_link_rate = std::max(
max_link_rate,
_tree->access(mb_root(mcp.mboard) / "link_max_rate").get()
);
}
sum_rate += is_tx ? get_tx_rate(chan) : get_rx_rate(chan);
}
if (max_link_rate > 0 and (max_link_rate / bytes_per_sample) < sum_rate) {
UHD_MSG(warning) << boost::format(
"The total sum of rates (%f MSps on %u channels) exceeds the maximum capacity of the connection.\n"
"This can cause %s."
) % (sum_rate/1e6) % args.channels.size() % (is_tx ? "underruns (U)" : "overflows (O)") << std::endl;
link_rate_is_ok = false;
}
return link_rate_is_ok;
}
};
multi_usrp::~multi_usrp(void){
/* NOP */
}
/***********************************************************************
* The Make Function
**********************************************************************/
multi_usrp::sptr multi_usrp::make(const device_addr_t &dev_addr){
UHD_LOG << "multi_usrp::make with args " << dev_addr.to_pp_string() << std::endl;
return sptr(new multi_usrp_impl(dev_addr));
}