//
// Copyright 2010-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
const std::string multi_usrp::ALL_GAINS = "";
/***********************************************************************
* Helper methods
**********************************************************************/
static void do_samp_rate_warning_message(
double target_rate,
double actual_rate,
const std::string &xx
){
static const double max_allowed_error = 1.0; //Sps
if (std::abs(target_rate - actual_rate) > max_allowed_error){
UHD_MSG(warning) << boost::format(
"The hardware does not support the requested %s sample rate:\n"
"Target sample rate: %f MSps\n"
"Actual sample rate: %f MSps\n"
) % xx % (target_rate/1e6) % (actual_rate/1e6);
}
}
static void do_tune_freq_warning_message(
const tune_request_t &tune_req,
double actual_freq,
const std::string &xx
){
//forget the warning when manual policy
if (tune_req.dsp_freq_policy == tune_request_t::POLICY_MANUAL) return;
if (tune_req.rf_freq_policy == tune_request_t::POLICY_MANUAL) return;
const double target_freq = tune_req.target_freq;
static const double max_allowed_error = 1.0; //Hz
if (std::abs(target_freq - actual_freq) > max_allowed_error){
UHD_MSG(warning) << boost::format(
"The hardware does not support the requested %s frequency:\n"
"Target frequency: %f MHz\n"
"Actual frequency: %f MHz\n"
) % xx % (target_freq/1e6) % (actual_freq/1e6);
}
}
static meta_range_t make_overall_tune_range(
const meta_range_t &fe_range,
const meta_range_t &dsp_range,
const double bw
){
meta_range_t range;
BOOST_FOREACH(const range_t &sub_range, fe_range){
range.push_back(range_t(
sub_range.start() + std::max(dsp_range.start(), -bw),
sub_range.stop() + std::min(dsp_range.stop(), bw),
dsp_range.step()
));
}
return range;
}
/***********************************************************************
* Gain helper functions
**********************************************************************/
static double get_gain_value(property_tree::sptr subtree){
return subtree->access("value").get();
}
static void set_gain_value(property_tree::sptr subtree, const double gain){
subtree->access("value").set(gain);
}
static meta_range_t get_gain_range(property_tree::sptr subtree){
return subtree->access("range").get();
}
static gain_fcns_t make_gain_fcns_from_subtree(property_tree::sptr subtree){
gain_fcns_t gain_fcns;
gain_fcns.get_range = boost::bind(&get_gain_range, subtree);
gain_fcns.get_value = boost::bind(&get_gain_value, subtree);
gain_fcns.set_value = boost::bind(&set_gain_value, subtree, _1);
return gain_fcns;
}
/***********************************************************************
* Tune Helper Functions
**********************************************************************/
static const double RX_SIGN = +1.0;
static const double TX_SIGN = -1.0;
static tune_result_t tune_xx_subdev_and_dsp(
const double xx_sign,
property_tree::sptr dsp_subtree,
property_tree::sptr rf_fe_subtree,
const tune_request_t &tune_request
){
//------------------------------------------------------------------
//-- calculate the LO offset, only used with automatic policy
//------------------------------------------------------------------
double lo_offset = 0.0;
if (rf_fe_subtree->access("use_lo_offset").get()){
//If the local oscillator will be in the passband, use an offset.
//But constrain the LO offset by the width of the filter bandwidth.
const double rate = dsp_subtree->access("rate/value").get();
const double bw = rf_fe_subtree->access("bandwidth/value").get();
if (bw > rate) lo_offset = std::min((bw - rate)/2, rate/2);
}
//------------------------------------------------------------------
//-- set the RF frequency depending upon the policy
//------------------------------------------------------------------
double target_rf_freq = 0.0;
switch (tune_request.rf_freq_policy){
case tune_request_t::POLICY_AUTO:
target_rf_freq = tune_request.target_freq + lo_offset;
rf_fe_subtree->access("freq/value").set(target_rf_freq);
break;
case tune_request_t::POLICY_MANUAL:
target_rf_freq = tune_request.rf_freq;
rf_fe_subtree->access("freq/value").set(target_rf_freq);
break;
case tune_request_t::POLICY_NONE: break; //does not set
}
const double actual_rf_freq = rf_fe_subtree->access("freq/value").get();
//------------------------------------------------------------------
//-- calculate the dsp freq, only used with automatic policy
//------------------------------------------------------------------
double target_dsp_freq = actual_rf_freq - tune_request.target_freq;
//invert the sign on the dsp freq for transmit
target_dsp_freq *= xx_sign;
//------------------------------------------------------------------
//-- set the dsp frequency depending upon the dsp frequency policy
//------------------------------------------------------------------
switch (tune_request.dsp_freq_policy){
case tune_request_t::POLICY_AUTO:
dsp_subtree->access("freq/value").set(target_dsp_freq);
break;
case tune_request_t::POLICY_MANUAL:
target_dsp_freq = tune_request.dsp_freq;
dsp_subtree->access("freq/value").set(target_dsp_freq);
break;
case tune_request_t::POLICY_NONE: break; //does not set
}
const double actual_dsp_freq = dsp_subtree->access("freq/value").get();
//------------------------------------------------------------------
//-- load and return the tune result
//------------------------------------------------------------------
tune_result_t tune_result;
tune_result.target_rf_freq = target_rf_freq;
tune_result.actual_rf_freq = actual_rf_freq;
tune_result.target_dsp_freq = target_dsp_freq;
tune_result.actual_dsp_freq = actual_dsp_freq;
return tune_result;
}
static double derive_freq_from_xx_subdev_and_dsp(
const double xx_sign,
property_tree::sptr dsp_subtree,
property_tree::sptr rf_fe_subtree
){
//extract actual dsp and IF frequencies
const double actual_rf_freq = rf_fe_subtree->access("freq/value").get();
const double actual_dsp_freq = dsp_subtree->access("freq/value").get();
//invert the sign on the dsp freq for transmit
return actual_rf_freq - actual_dsp_freq * xx_sign;
}
/***********************************************************************
* Multi USRP Implementation
**********************************************************************/
class multi_usrp_impl : public multi_usrp{
public:
multi_usrp_impl(const device_addr_t &addr){
_dev = device::make(addr);
_tree = _dev->get_tree();
}
device::sptr get_device(void){
return _dev;
}
dict get_usrp_rx_info(size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
dict usrp_info;
mboard_eeprom_t mb_eeprom = _tree->access(mb_root(mcp.mboard) / "eeprom").get();
dboard_eeprom_t db_eeprom = _tree->access(rx_rf_fe_root(mcp.chan).branch_path().branch_path() / "rx_eeprom").get();
usrp_info["mboard_id"] = _tree->access(mb_root(mcp.mboard) / "name").get();
usrp_info["mboard_name"] = mb_eeprom["name"];
usrp_info["mboard_serial"] = mb_eeprom["serial"];
usrp_info["rx_id"] = db_eeprom.id.to_pp_string();
usrp_info["rx_subdev_name"] = _tree->access(rx_rf_fe_root(mcp.chan) / "name").get();
usrp_info["rx_subdev_spec"] = _tree->access(mb_root(mcp.mboard) / "rx_subdev_spec").get().to_string();
usrp_info["rx_serial"] = db_eeprom.serial;
usrp_info["rx_antenna"] = _tree->access(rx_rf_fe_root(mcp.chan) / "antenna" / "value").get();
return usrp_info;
}
dict get_usrp_tx_info(size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
dict usrp_info;
mboard_eeprom_t mb_eeprom = _tree->access(mb_root(mcp.mboard) / "eeprom").get();
dboard_eeprom_t gdb_eeprom = _tree->access(tx_rf_fe_root(mcp.chan).branch_path().branch_path() / "gdb_eeprom").get();
dboard_eeprom_t db_eeprom;
if(gdb_eeprom.id != dboard_id_t::none()) db_eeprom = gdb_eeprom;
else db_eeprom = _tree->access(tx_rf_fe_root(mcp.chan).branch_path().branch_path() / "tx_eeprom").get();
usrp_info["mboard_id"] = _tree->access(mb_root(mcp.mboard) / "name").get();
usrp_info["mboard_name"] = mb_eeprom["name"];
usrp_info["mboard_serial"] = mb_eeprom["serial"];
usrp_info["tx_id"] = db_eeprom.id.to_pp_string();
usrp_info["tx_subdev_name"] = _tree->access(tx_rf_fe_root(mcp.chan) / "name").get();
usrp_info["tx_subdev_spec"] = _tree->access(mb_root(mcp.mboard) / "tx_subdev_spec").get().to_string();
usrp_info["tx_serial"] = db_eeprom.serial;
usrp_info["tx_antenna"] = _tree->access(tx_rf_fe_root(mcp.chan) / "antenna" / "value").get();
return usrp_info;
}
/*******************************************************************
* Mboard methods
******************************************************************/
void set_master_clock_rate(double rate, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "tick_rate").set(rate);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_master_clock_rate(rate, m);
}
}
double get_master_clock_rate(size_t mboard){
return _tree->access(mb_root(mboard) / "tick_rate").get();
}
std::string get_pp_string(void){
std::string buff = str(boost::format(
"%s USRP:\n"
" Device: %s\n"
)
% ((get_num_mboards() > 1)? "Multi" : "Single")
% (_tree->access("/name").get())
);
for (size_t m = 0; m < get_num_mboards(); m++){
buff += str(boost::format(
" Mboard %d: %s\n"
) % m
% (_tree->access(mb_root(m) / "name").get())
);
}
//----------- rx side of life ----------------------------------
for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){
for (; chan < (m + 1)*get_rx_subdev_spec(m).size(); chan++){
buff += str(boost::format(
" RX Channel: %u\n"
" RX DSP: %s\n"
" RX Dboard: %s\n"
" RX Subdev: %s\n"
) % chan
% rx_dsp_root(chan).leaf()
% rx_rf_fe_root(chan).branch_path().branch_path().leaf()
% (_tree->access(rx_rf_fe_root(chan) / "name").get())
);
}
}
//----------- tx side of life ----------------------------------
for (size_t m = 0, chan = 0; m < get_num_mboards(); m++){
for (; chan < (m + 1)*get_tx_subdev_spec(m).size(); chan++){
buff += str(boost::format(
" TX Channel: %u\n"
" TX DSP: %s\n"
" TX Dboard: %s\n"
" TX Subdev: %s\n"
) % chan
% tx_dsp_root(chan).leaf()
% tx_rf_fe_root(chan).branch_path().branch_path().leaf()
% (_tree->access(tx_rf_fe_root(chan) / "name").get())
);
}
}
return buff;
}
std::string get_mboard_name(size_t mboard){
return _tree->access(mb_root(mboard) / "name").get();
}
time_spec_t get_time_now(size_t mboard = 0){
return _tree->access(mb_root(mboard) / "time/now").get();
}
time_spec_t get_time_last_pps(size_t mboard = 0){
return _tree->access(mb_root(mboard) / "time/pps").get();
}
void set_time_now(const time_spec_t &time_spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time/now").set(time_spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_time_now(time_spec, m);
}
}
void set_time_next_pps(const time_spec_t &time_spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time/pps").set(time_spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_time_next_pps(time_spec, m);
}
}
void set_time_unknown_pps(const time_spec_t &time_spec){
UHD_MSG(status) << " 1) catch time transition at pps edge" << std::endl;
time_spec_t time_start = get_time_now();
time_spec_t time_start_last_pps = get_time_last_pps();
while(true){
if (get_time_last_pps() != time_start_last_pps) break;
if ((get_time_now() - time_start) > time_spec_t(1.1)){
throw uhd::runtime_error(
"Board 0 may not be getting a PPS signal!\n"
"No PPS detected within the time interval.\n"
"See the application notes for your device.\n"
);
}
}
UHD_MSG(status) << " 2) set times next pps (synchronously)" << std::endl;
set_time_next_pps(time_spec, ALL_MBOARDS);
boost::this_thread::sleep(boost::posix_time::seconds(1));
//verify that the time registers are read to be within a few RTT
for (size_t m = 1; m < get_num_mboards(); m++){
time_spec_t time_0 = this->get_time_now(0);
time_spec_t time_i = this->get_time_now(m);
if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)){ //10 ms: greater than RTT but not too big
UHD_MSG(warning) << boost::format(
"Detected time deviation between board %d and board 0.\n"
"Board 0 time is %f seconds.\n"
"Board %d time is %f seconds.\n"
) % m % time_0.get_real_secs() % m % time_i.get_real_secs();
}
}
}
bool get_time_synchronized(void){
for (size_t m = 1; m < get_num_mboards(); m++){
time_spec_t time_0 = this->get_time_now(0);
time_spec_t time_i = this->get_time_now(m);
if (time_i < time_0 or (time_i - time_0) > time_spec_t(0.01)) return false;
}
return true;
}
void set_command_time(const time_spec_t &, size_t){
throw uhd::not_implemented_error("Not implemented yet, but we have a very good idea of how to do it.");
}
void clear_command_time(size_t){
throw uhd::not_implemented_error("Not implemented yet, but we have a very good idea of how to do it.");
}
void issue_stream_cmd(const stream_cmd_t &stream_cmd, size_t chan){
if (chan != ALL_CHANS){
_tree->access(rx_dsp_root(chan) / "stream_cmd").set(stream_cmd);
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
issue_stream_cmd(stream_cmd, c);
}
}
void set_clock_config(const clock_config_t &clock_config, size_t mboard){
//set the reference source...
std::string clock_source;
switch(clock_config.ref_source){
case clock_config_t::REF_INT: clock_source = "internal"; break;
case clock_config_t::REF_SMA: clock_source = "external"; break;
case clock_config_t::REF_MIMO: clock_source = "mimo"; break;
default: clock_source = "unknown";
}
this->set_clock_source(clock_source, mboard);
//set the time source
std::string time_source;
switch(clock_config.pps_source){
case clock_config_t::PPS_INT: time_source = "internal"; break;
case clock_config_t::PPS_SMA: time_source = "external"; break;
case clock_config_t::PPS_MIMO: time_source = "mimo"; break;
default: time_source = "unknown";
}
if (time_source == "external" and clock_config.pps_polarity == clock_config_t::PPS_NEG) time_source = "_external_";
this->set_time_source(time_source, mboard);
}
void set_time_source(const std::string &source, const size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "time_source" / "value").set(source);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
this->set_time_source(source, m);
}
}
std::string get_time_source(const size_t mboard){
return _tree->access(mb_root(mboard) / "time_source" / "value").get();
}
std::vector get_time_sources(const size_t mboard){
return _tree->access >(mb_root(mboard) / "time_source" / "options").get();
}
void set_clock_source(const std::string &source, const size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "clock_source" / "value").set(source);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
this->set_clock_source(source, m);
}
}
std::string get_clock_source(const size_t mboard){
return _tree->access(mb_root(mboard) / "clock_source" / "value").get();
}
std::vector get_clock_sources(const size_t mboard){
return _tree->access >(mb_root(mboard) / "clock_source" / "options").get();
}
size_t get_num_mboards(void){
return _tree->list("/mboards").size();
}
sensor_value_t get_mboard_sensor(const std::string &name, size_t mboard){
return _tree->access(mb_root(mboard) / "sensors" / name).get();
}
std::vector get_mboard_sensor_names(size_t mboard){
return _tree->list(mb_root(mboard) / "sensors");
}
void set_user_register(const boost::uint8_t addr, const boost::uint32_t data, size_t mboard){
if (mboard != ALL_MBOARDS){
typedef std::pair user_reg_t;
_tree->access(mb_root(mboard) / "user/regs").set(user_reg_t(addr, data));
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_user_register(addr, data, m);
}
}
/*******************************************************************
* RX methods
******************************************************************/
void set_rx_subdev_spec(const subdev_spec_t &spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "rx_subdev_spec").set(spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_rx_subdev_spec(spec, m);
}
}
subdev_spec_t get_rx_subdev_spec(size_t mboard){
return _tree->access(mb_root(mboard) / "rx_subdev_spec").get();
}
size_t get_rx_num_channels(void){
size_t sum = 0;
for (size_t m = 0; m < get_num_mboards(); m++){
sum += get_rx_subdev_spec(m).size();
}
return sum;
}
std::string get_rx_subdev_name(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "name").get();
}
void set_rx_rate(double rate, size_t chan){
if (chan != ALL_CHANS){
_tree->access(rx_dsp_root(chan) / "rate" / "value").set(rate);
do_samp_rate_warning_message(rate, get_rx_rate(chan), "RX");
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
set_rx_rate(rate, c);
}
}
double get_rx_rate(size_t chan){
return _tree->access(rx_dsp_root(chan) / "rate" / "value").get();
}
meta_range_t get_rx_rates(size_t chan){
return _tree->access(rx_dsp_root(chan) / "rate" / "range").get();
}
tune_result_t set_rx_freq(const tune_request_t &tune_request, size_t chan){
tune_result_t r = tune_xx_subdev_and_dsp(RX_SIGN, _tree->subtree(rx_dsp_root(chan)), _tree->subtree(rx_rf_fe_root(chan)), tune_request);
do_tune_freq_warning_message(tune_request, get_rx_freq(chan), "RX");
return r;
}
double get_rx_freq(size_t chan){
return derive_freq_from_xx_subdev_and_dsp(RX_SIGN, _tree->subtree(rx_dsp_root(chan)), _tree->subtree(rx_rf_fe_root(chan)));
}
freq_range_t get_rx_freq_range(size_t chan){
return make_overall_tune_range(
_tree->access(rx_rf_fe_root(chan) / "freq" / "range").get(),
_tree->access(rx_dsp_root(chan) / "freq" / "range").get(),
this->get_rx_bandwidth(chan)
);
}
void set_rx_gain(double gain, const std::string &name, size_t chan){
return rx_gain_group(chan)->set_value(gain, name);
}
double get_rx_gain(const std::string &name, size_t chan){
return rx_gain_group(chan)->get_value(name);
}
gain_range_t get_rx_gain_range(const std::string &name, size_t chan){
return rx_gain_group(chan)->get_range(name);
}
std::vector get_rx_gain_names(size_t chan){
return rx_gain_group(chan)->get_names();
}
void set_rx_antenna(const std::string &ant, size_t chan){
_tree->access(rx_rf_fe_root(chan) / "antenna" / "value").set(ant);
}
std::string get_rx_antenna(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "antenna" / "value").get();
}
std::vector get_rx_antennas(size_t chan){
return _tree->access >(rx_rf_fe_root(chan) / "antenna" / "options").get();
}
void set_rx_bandwidth(double bandwidth, size_t chan){
_tree->access(rx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth);
}
double get_rx_bandwidth(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "bandwidth" / "value").get();
}
meta_range_t get_rx_bandwidth_range(size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "bandwidth" / "range").get();
}
dboard_iface::sptr get_rx_dboard_iface(size_t chan){
return _tree->access(rx_rf_fe_root(chan).branch_path().branch_path() / "iface").get();
}
sensor_value_t get_rx_sensor(const std::string &name, size_t chan){
return _tree->access(rx_rf_fe_root(chan) / "sensors" / name).get();
}
std::vector get_rx_sensor_names(size_t chan){
return _tree->list(rx_rf_fe_root(chan) / "sensors");
}
void set_rx_dc_offset(const bool enb, size_t chan){
if (chan != ALL_CHANS){
_tree->access(rx_fe_root(chan) / "dc_offset" / "enable").set(enb);
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_dc_offset(enb, c);
}
}
void set_rx_dc_offset(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
_tree->access >(rx_fe_root(chan) / "dc_offset" / "value").set(offset);
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_dc_offset(offset, c);
}
}
void set_rx_iq_balance(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
_tree->access >(rx_fe_root(chan) / "iq_balance" / "value").set(offset);
return;
}
for (size_t c = 0; c < get_rx_num_channels(); c++){
this->set_rx_iq_balance(offset, c);
}
}
/*******************************************************************
* TX methods
******************************************************************/
void set_tx_subdev_spec(const subdev_spec_t &spec, size_t mboard){
if (mboard != ALL_MBOARDS){
_tree->access(mb_root(mboard) / "tx_subdev_spec").set(spec);
return;
}
for (size_t m = 0; m < get_num_mboards(); m++){
set_tx_subdev_spec(spec, m);
}
}
subdev_spec_t get_tx_subdev_spec(size_t mboard){
return _tree->access(mb_root(mboard) / "tx_subdev_spec").get();
}
size_t get_tx_num_channels(void){
size_t sum = 0;
for (size_t m = 0; m < get_num_mboards(); m++){
sum += get_tx_subdev_spec(m).size();
}
return sum;
}
std::string get_tx_subdev_name(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "name").get();
}
void set_tx_rate(double rate, size_t chan){
if (chan != ALL_CHANS){
_tree->access(tx_dsp_root(chan) / "rate" / "value").set(rate);
do_samp_rate_warning_message(rate, get_tx_rate(chan), "TX");
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
set_tx_rate(rate, c);
}
}
double get_tx_rate(size_t chan){
return _tree->access(tx_dsp_root(chan) / "rate" / "value").get();
}
meta_range_t get_tx_rates(size_t chan){
return _tree->access(tx_dsp_root(chan) / "rate" / "range").get();
}
tune_result_t set_tx_freq(const tune_request_t &tune_request, size_t chan){
tune_result_t r = tune_xx_subdev_and_dsp(TX_SIGN, _tree->subtree(tx_dsp_root(chan)), _tree->subtree(tx_rf_fe_root(chan)), tune_request);
do_tune_freq_warning_message(tune_request, get_tx_freq(chan), "TX");
return r;
}
double get_tx_freq(size_t chan){
return derive_freq_from_xx_subdev_and_dsp(TX_SIGN, _tree->subtree(tx_dsp_root(chan)), _tree->subtree(tx_rf_fe_root(chan)));
}
freq_range_t get_tx_freq_range(size_t chan){
return make_overall_tune_range(
_tree->access(tx_rf_fe_root(chan) / "freq" / "range").get(),
_tree->access(tx_dsp_root(chan) / "freq" / "range").get(),
this->get_tx_bandwidth(chan)
);
}
void set_tx_gain(double gain, const std::string &name, size_t chan){
return tx_gain_group(chan)->set_value(gain, name);
}
double get_tx_gain(const std::string &name, size_t chan){
return tx_gain_group(chan)->get_value(name);
}
gain_range_t get_tx_gain_range(const std::string &name, size_t chan){
return tx_gain_group(chan)->get_range(name);
}
std::vector get_tx_gain_names(size_t chan){
return tx_gain_group(chan)->get_names();
}
void set_tx_antenna(const std::string &ant, size_t chan){
_tree->access(tx_rf_fe_root(chan) / "antenna" / "value").set(ant);
}
std::string get_tx_antenna(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "antenna" / "value").get();
}
std::vector get_tx_antennas(size_t chan){
return _tree->access >(tx_rf_fe_root(chan) / "antenna" / "options").get();
}
void set_tx_bandwidth(double bandwidth, size_t chan){
_tree->access(tx_rf_fe_root(chan) / "bandwidth" / "value").set(bandwidth);
}
double get_tx_bandwidth(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "bandwidth" / "value").get();
}
meta_range_t get_tx_bandwidth_range(size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "bandwidth" / "range").get();
}
dboard_iface::sptr get_tx_dboard_iface(size_t chan){
return _tree->access(tx_rf_fe_root(chan).branch_path().branch_path() / "iface").get();
}
sensor_value_t get_tx_sensor(const std::string &name, size_t chan){
return _tree->access(tx_rf_fe_root(chan) / "sensors" / name).get();
}
std::vector get_tx_sensor_names(size_t chan){
return _tree->list(tx_rf_fe_root(chan) / "sensors");
}
void set_tx_dc_offset(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
_tree->access >(tx_fe_root(chan) / "dc_offset" / "value").set(offset);
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
this->set_tx_dc_offset(offset, c);
}
}
void set_tx_iq_balance(const std::complex &offset, size_t chan){
if (chan != ALL_CHANS){
_tree->access >(tx_fe_root(chan) / "iq_balance" / "value").set(offset);
return;
}
for (size_t c = 0; c < get_tx_num_channels(); c++){
this->set_tx_iq_balance(offset, c);
}
}
private:
device::sptr _dev;
property_tree::sptr _tree;
struct mboard_chan_pair{
size_t mboard, chan;
mboard_chan_pair(void): mboard(0), chan(0){}
};
mboard_chan_pair rx_chan_to_mcp(size_t chan){
mboard_chan_pair mcp;
mcp.chan = chan;
for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){
size_t sss = get_rx_subdev_spec(mcp.mboard).size();
if (mcp.chan < sss) break;
mcp.chan -= sss;
}
return mcp;
}
mboard_chan_pair tx_chan_to_mcp(size_t chan){
mboard_chan_pair mcp;
mcp.chan = chan;
for (mcp.mboard = 0; mcp.mboard < get_num_mboards(); mcp.mboard++){
size_t sss = get_tx_subdev_spec(mcp.mboard).size();
if (mcp.chan < sss) break;
mcp.chan -= sss;
}
return mcp;
}
fs_path mb_root(const size_t mboard){
const std::string name = _tree->list("/mboards").at(mboard);
return "/mboards/" + name;
}
fs_path rx_dsp_root(const size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
const std::string name = _tree->list(mb_root(mcp.mboard) / "rx_dsps").at(mcp.chan);
return mb_root(mcp.mboard) / "rx_dsps" / name;
}
fs_path tx_dsp_root(const size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
const std::string name = _tree->list(mb_root(mcp.mboard) / "tx_dsps").at(mcp.chan);
return mb_root(mcp.mboard) / "tx_dsps" / name;
}
fs_path rx_fe_root(const size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "rx_frontends" / spec.db_name;
}
fs_path tx_fe_root(const size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "tx_frontends" / spec.db_name;
}
fs_path rx_rf_fe_root(const size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "dboards" / spec.db_name / "rx_frontends" / spec.sd_name;
}
fs_path tx_rf_fe_root(const size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
return mb_root(mcp.mboard) / "dboards" / spec.db_name / "tx_frontends" / spec.sd_name;
}
gain_group::sptr rx_gain_group(size_t chan){
mboard_chan_pair mcp = rx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_rx_subdev_spec(mcp.mboard).at(mcp.chan);
gain_group::sptr gg = gain_group::make();
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains")){
gg->register_fcns("ADC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "rx_codecs" / spec.db_name / "gains" / name)), 0 /* low prio */);
}
BOOST_FOREACH(const std::string &name, _tree->list(rx_rf_fe_root(chan) / "gains")){
gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(rx_rf_fe_root(chan) / "gains" / name)), 1 /* high prio */);
}
return gg;
}
gain_group::sptr tx_gain_group(size_t chan){
mboard_chan_pair mcp = tx_chan_to_mcp(chan);
const subdev_spec_pair_t spec = get_tx_subdev_spec(mcp.mboard).at(mcp.chan);
gain_group::sptr gg = gain_group::make();
BOOST_FOREACH(const std::string &name, _tree->list(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains")){
gg->register_fcns("ADC-"+name, make_gain_fcns_from_subtree(_tree->subtree(mb_root(mcp.mboard) / "tx_codecs" / spec.db_name / "gains" / name)), 1 /* high prio */);
}
BOOST_FOREACH(const std::string &name, _tree->list(tx_rf_fe_root(chan) / "gains")){
gg->register_fcns(name, make_gain_fcns_from_subtree(_tree->subtree(tx_rf_fe_root(chan) / "gains" / name)), 0 /* low prio */);
}
return gg;
}
};
/***********************************************************************
* The Make Function
**********************************************************************/
multi_usrp::sptr multi_usrp::make(const device_addr_t &dev_addr){
return sptr(new multi_usrp_impl(dev_addr));
}