// // Copyright 2017 Ettus Research, National Instruments Company // Copyright 2019 Ettus Research, National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include "mpmd_link_if_ctrl_udp.hpp" #include "mpmd_impl.hpp" #include "mpmd_link_if_mgr.hpp" #include #include #include #include #include #include #include #include #include #ifdef HAVE_DPDK # include # include #endif using namespace uhd; using namespace uhd::transport; using namespace uhd::mpmd::xport; namespace { //! Maximum CHDR packet size in bytes. // Our 10GbE connections use custom FPGA code which caps frames at 8192 bytes. // However, we artificially limit this to a smaller frame size, which gives us // a safety margin. const size_t MPMD_10GE_DATA_FRAME_MAX_SIZE = 8016; // For 1 GbE, we either go through our on-chip PHY/MAC, which also caps at 8192 // bytes, or we go through the RJ45, and then the DMA to the chip, which can go // higher. We thus choose the same value as for 10 GbE. // Note that for 1 GbE, we almost always have an MTU of 1500, so we will rarely // meet this frame size, but MTU discovery will take care of that. This is just // a cap to make sure we never try CHDR packets that will clog our fabric. const size_t MPMD_1GE_DATA_FRAME_MAX_SIZE = 8016; //! Number of send/recv frames const size_t MPMD_ETH_NUM_FRAMES = 32; //! Buffer depth in seconds. We use the link rate to determine how large buffers // must be to store this many seconds worth of data. const double MPMD_BUFFER_DEPTH = 20.0e-3; // s //! For MTU discovery, the time we wait for a packet before calling it // oversized (seconds). const double MPMD_MTU_DISCOVERY_TIMEOUT = 0.02; // TODO: move these to appropriate header file for all other devices const size_t MAX_RATE_1GIGE = 1e9 / 8; // byte/s const size_t MAX_RATE_10GIGE = 10e9 / 8; // byte/s mpmd_link_if_ctrl_udp::udp_link_info_map get_udp_info_from_xport_info( const mpmd_link_if_mgr::xport_info_list_t& link_info_list) { mpmd_link_if_ctrl_udp::udp_link_info_map result; for (const auto& link_info : link_info_list) { if (!link_info.count("ipv4")) { UHD_LOG_ERROR("MPMD::XPORT::UDP", "Invalid response from get_chdr_link_options()! No `ipv4' key!"); throw uhd::runtime_error( "Invalid response from get_chdr_link_options()! No `ipv4' key!"); } if (!link_info.count("port")) { UHD_LOG_ERROR("MPMD::XPORT::UDP", "Invalid response from get_chdr_link_options()! No `port' key!"); throw uhd::runtime_error( "Invalid response from get_chdr_link_options()! No `port' key!"); } const std::string udp_port = link_info.at("port"); const size_t link_rate = link_info.count("link_rate") ? std::stoul(link_info.at("link_rate")) : MAX_RATE_1GIGE; const std::string link_type = link_info.at("type"); const size_t if_mtu = std::stoul(link_info.at("mtu")); result.emplace(link_info.at("ipv4"), mpmd_link_if_ctrl_udp::udp_link_info_t{ udp_port, link_rate, link_type, if_mtu}); } return result; } std::vector get_addrs_from_mb_args(const uhd::device_addr_t& mb_args, const mpmd_link_if_ctrl_udp::udp_link_info_map& link_info_list) { std::vector addrs; if (!link_info_list.empty() && link_info_list.begin()->second.link_type == "internal") { // If link_type is "internal" we are local. In this case // use this address always. MPM knows better than us. addrs.push_back(link_info_list.begin()->first); } else { if (mb_args.has_key(FIRST_ADDR_KEY)) { addrs.push_back(mb_args[FIRST_ADDR_KEY]); } if (mb_args.has_key(SECOND_ADDR_KEY)) { addrs.push_back(mb_args[SECOND_ADDR_KEY]); } if (mb_args.has_key(THIRD_ADDR_KEY)) { addrs.push_back(mb_args[THIRD_ADDR_KEY]); } if (mb_args.has_key(FOURTH_ADDR_KEY)) { addrs.push_back(mb_args[FOURTH_ADDR_KEY]); } } if(addrs.empty()) { if (!link_info_list.empty()) { addrs.push_back(link_info_list.begin()->first); } else { UHD_LOG_WARNING("MPMD::XPORT::UDP", "The `" << FIRST_ADDR_KEY << "' key must be specified in " "device args to create an Ethernet transport to an RFNoC block"); return {}; } } // This is where in UHD we encode the knowledge about what // get_chdr_link_options() returns to us. for (const auto& ip_addr : addrs) { if (link_info_list.count(ip_addr)) { continue; } UHD_LOG_WARNING("MPMD::XPORT::UDP", "Cannot create UDP link to device: The IP address `" << ip_addr << "' is requested, but not reachable."); return {}; } return addrs; } /*! Run a plausibility check on a detected MTU, and return a value that passes * custom constraints. * * This function forcibly overrides the detected MTU value using hardcoded * heuristics/rules, even if the detected MTU is actually correct! * These rules should thus be chosen very carefully, and should only coerce down * (i.e., the return value should be smaller than argument). */ size_t run_mtu_plausibility_check(const size_t detected_mtu) { // 1 GbE MTU check: We have observed that the detected path MTU for 1 GbE // devices can come out a few bytes too high over 1 GbE. This is most likely // due to some drivers being a little more tolerant with larger-than-MTU // packets, which is not helpful for us. When the MTU detection errs on the // large side, it can happen that either packets going from UHD to the // device get fragmented (this is bad, the USRP can't defragment) or that // packets coming from the device won't get accepted by our NIC/driver, // causing drops (this is the rarer case). We avoid this by detecting typical // 1 GbE MTU sizes and coercing them to 1472 bytes. When using a NIC MTU of // 1500, we have observed detected MTUs of 1476 up to 1488 bytes, when they // should be 1472 bytes instead. { constexpr size_t DEFAULT_1GBE_MTU = 1472; // bytes constexpr size_t MIN_1GBE_MTU_COERCE_VALUE = 1472; // bytes constexpr size_t MAX_1GBE_MTU_COERCE_VALUE = 1500; // bytes if (detected_mtu > MIN_1GBE_MTU_COERCE_VALUE && detected_mtu < MAX_1GBE_MTU_COERCE_VALUE) { UHD_LOG_DEBUG("MPMD", "MTU discovery detected " << detected_mtu << " bytes. This may be due to a faulty MTU discovery. Coercing to " << DEFAULT_1GBE_MTU << " bytes."); return DEFAULT_1GBE_MTU; } } // End 1 GbE MTU check. // If no one raises any red flags, we let the detected MTU slide. return detected_mtu; } /*! Do a binary search to discover MTU * * Uses the MPM echo service to figure out MTU. We simply send a bunch of * packets and see if they come back until we converged on the path MTU. * The end result must lie between \p min_frame_size and \p max_frame_size. * * \param address IP address * \param port UDP port (yeah it's a string!) * \param min_frame_size Minimum frame size, initialize algorithm to start * with this value * \param max_frame_size Maximum frame size, initialize algorithm to start * with this value * \param echo_timeout Timeout value in seconds. For frame sizes that * exceed the MTU, we don't expect a response, and this * is the amount of time we'll wait before we assume * the frame size exceeds the MTU. */ size_t discover_mtu(const std::string& address, const std::string& port, size_t min_frame_size, size_t max_frame_size, const double echo_timeout, const bool use_dpdk) { //! Function to create a udp_simple::sptr (kernel-based or DPDK-based) using udp_simple_factory_t = std::function; udp_simple_factory_t udp_make_broadcast = udp_simple::make_broadcast; if (use_dpdk) { #ifdef HAVE_DPDK udp_make_broadcast = [](const std::string& addr, const std::string& port) { return dpdk_simple::make_broadcast(addr, port); }; #else UHD_LOG_WARNING("MPMD", "DPDK was requested but is not available, falling back to regular UDP"); #endif } const size_t echo_prefix_offset = uhd::mpmd::mpmd_impl::MPM_ECHO_CMD.size(); const size_t mtu_hdr_len = echo_prefix_offset + 10; UHD_ASSERT_THROW(min_frame_size < max_frame_size); UHD_ASSERT_THROW(min_frame_size % 4 == 0); UHD_ASSERT_THROW(max_frame_size % 4 == 0); UHD_ASSERT_THROW(min_frame_size >= echo_prefix_offset + mtu_hdr_len); using namespace uhd::transport; // The return port will probably differ from the discovery port, so we // need a "broadcast" UDP connection; using make_connected() would // drop packets udp_simple::sptr udp = udp_make_broadcast(address, port); std::string send_buf(uhd::mpmd::mpmd_impl::MPM_ECHO_CMD); send_buf.resize(max_frame_size, '#'); UHD_ASSERT_THROW(send_buf.size() == max_frame_size); std::vector recv_buf; recv_buf.resize(max_frame_size, ' '); // Little helper to check returned packets match the sent ones auto require_bufs_match = [&recv_buf, &send_buf, mtu_hdr_len](const size_t len) { if (len < mtu_hdr_len or std::memcmp((void*)&recv_buf[0], (void*)&send_buf[0], mtu_hdr_len) != 0) { throw uhd::runtime_error("Unexpected content of MTU " "discovery return packet!"); } }; UHD_LOG_TRACE("MPMD", "Determining UDP MTU... "); size_t seq_no = 0; while (min_frame_size < max_frame_size) { // Only test multiples of 4 bytes! const size_t test_frame_size = (max_frame_size / 2 + min_frame_size / 2 + 3) & ~size_t(3); // Encode sequence number and current size in the string, makes it // easy to debug in code or Wireshark. Is also used for identifying // response packets. std::sprintf( &send_buf[echo_prefix_offset], ";%04lu,%04lu", seq_no++, test_frame_size); UHD_LOG_TRACE("MPMD", "Testing frame size " << test_frame_size); udp->send(boost::asio::buffer(&send_buf[0], test_frame_size)); const size_t len = udp->recv(boost::asio::buffer(recv_buf), echo_timeout); if (len == 0) { // Nothing received, so this is probably too big max_frame_size = test_frame_size - 4; } else if (len >= test_frame_size) { // Size went through, so bump the minimum require_bufs_match(len); min_frame_size = test_frame_size; } else if (len < test_frame_size) { // This is an odd case. Something must have snipped the packet // on the way back. Still, we'll just back off and try // something smaller. UHD_LOG_DEBUG("MPMD", "Unexpected packet truncation during MTU discovery."); require_bufs_match(len); max_frame_size = len; } } min_frame_size = run_mtu_plausibility_check(min_frame_size); UHD_LOG_DEBUG("MPMD", "Path MTU for address " << address << ": " << min_frame_size); return min_frame_size; } } // namespace /****************************************************************************** * Structors *****************************************************************************/ mpmd_link_if_ctrl_udp::mpmd_link_if_ctrl_udp(const uhd::device_addr_t& mb_args, const mpmd_link_if_mgr::xport_info_list_t& xport_info, const uhd::rfnoc::chdr_w_t chdr_w) : _mb_args(mb_args) , _udp_info(get_udp_info_from_xport_info(xport_info)) , _mtu(MPMD_10GE_DATA_FRAME_MAX_SIZE) , _pkt_factory(chdr_w, ENDIANNESS_LITTLE) { const bool use_dpdk = mb_args.has_key("use_dpdk"); // FIXME use constrained_device_args const std::string mpm_discovery_port = _mb_args.get( mpmd_impl::MPM_DISCOVERY_PORT_KEY, std::to_string(mpmd_impl::MPM_DISCOVERY_PORT)); auto discover_mtu_for_ip = [mpm_discovery_port, use_dpdk]( const std::string& ip_addr) { return discover_mtu(ip_addr, mpm_discovery_port, IP_PROTOCOL_MIN_MTU_SIZE - IP_PROTOCOL_UDP_PLUS_IP_HEADER, MPMD_10GE_DATA_FRAME_MAX_SIZE, MPMD_MTU_DISCOVERY_TIMEOUT, use_dpdk); }; const std::vector requested_addrs( get_addrs_from_mb_args(mb_args, _udp_info)); for (const auto& ip_addr : requested_addrs) { try { // If MTU discovery fails, we gracefully recover, but declare that // link invalid. auto& info = _udp_info.at(ip_addr); if (info.link_type == "internal") { UHD_LOG_TRACE("MPMD::XPORT::UDP", "MTU for internal interface " << ip_addr << " is " << std::to_string(info.if_mtu)); _mtu = std::min(_mtu, info.if_mtu); } else { _mtu = std::min(_mtu, discover_mtu_for_ip(ip_addr)); } _available_addrs.push_back(ip_addr); } catch (const uhd::exception& ex) { UHD_LOG_WARNING("MPMD::XPORT::UDP", "Error during MTU discovery on address " << ip_addr << ": " << ex.what()); } } } /****************************************************************************** * API *****************************************************************************/ uhd::transport::both_links_t mpmd_link_if_ctrl_udp::get_link(const size_t link_idx, const uhd::transport::link_type_t link_type, const uhd::device_addr_t& link_args) { UHD_ASSERT_THROW(link_idx < _available_addrs.size()); const std::string ip_addr = _available_addrs.at(link_idx); const std::string udp_port = _udp_info.at(ip_addr).udp_port; const size_t link_rate = get_link_rate(link_idx); const bool enable_fc = not link_args.has_key("enable_fc") || uhd::cast::from_str(link_args.get("enable_fc")); const bool lossy_xport = enable_fc; const bool use_dpdk = _mb_args.has_key("use_dpdk"); // FIXME use constrained device args link_params_t default_link_params; default_link_params.num_send_frames = MPMD_ETH_NUM_FRAMES; default_link_params.num_recv_frames = MPMD_ETH_NUM_FRAMES; default_link_params.send_frame_size = (link_rate == MAX_RATE_10GIGE) ? MPMD_10GE_DATA_FRAME_MAX_SIZE : (link_rate == MAX_RATE_1GIGE) ? MPMD_1GE_DATA_FRAME_MAX_SIZE : get_mtu(uhd::TX_DIRECTION); default_link_params.recv_frame_size = (link_rate == MAX_RATE_10GIGE) ? MPMD_10GE_DATA_FRAME_MAX_SIZE : (link_rate == MAX_RATE_1GIGE) ? MPMD_1GE_DATA_FRAME_MAX_SIZE : get_mtu(uhd::RX_DIRECTION); default_link_params.send_buff_size = get_link_rate(link_idx) * MPMD_BUFFER_DEPTH; default_link_params.recv_buff_size = get_link_rate(link_idx) * MPMD_BUFFER_DEPTH; #ifdef HAVE_DPDK if(use_dpdk) { default_link_params.num_recv_frames = default_link_params.recv_buff_size / default_link_params.recv_frame_size; } #endif link_params_t link_params = calculate_udp_link_params(link_type, get_mtu(uhd::TX_DIRECTION), get_mtu(uhd::RX_DIRECTION), default_link_params, _mb_args, link_args); // Enforce a minimum bound of the number of receive and send frames. link_params.num_send_frames = std::max(uhd::rfnoc::MIN_NUM_FRAMES, link_params.num_send_frames); link_params.num_recv_frames = std::max(uhd::rfnoc::MIN_NUM_FRAMES, link_params.num_recv_frames); if (use_dpdk) { #ifdef HAVE_DPDK auto link = uhd::transport::udp_dpdk_link::make(ip_addr, udp_port, link_params); return std::make_tuple(link, link_params.send_buff_size, link, link_params.recv_buff_size, lossy_xport, true, enable_fc); #else UHD_LOG_WARNING("MPMD", "Cannot create DPDK transport, falling back to UDP"); #endif } auto link = uhd::transport::udp_boost_asio_link::make(ip_addr, udp_port, link_params, link_params.recv_buff_size, link_params.send_buff_size); return std::make_tuple(link, link_params.send_buff_size, link, link_params.recv_buff_size, lossy_xport, false, enable_fc); } size_t mpmd_link_if_ctrl_udp::get_num_links() const { return _available_addrs.size(); } //! Return the rate of the underlying link in bytes/sec double mpmd_link_if_ctrl_udp::get_link_rate(const size_t link_idx) const { UHD_ASSERT_THROW(link_idx < get_num_links()); return _udp_info.at(_available_addrs.at(link_idx)).link_rate; } const uhd::rfnoc::chdr::chdr_packet_factory& mpmd_link_if_ctrl_udp::get_packet_factory() const { return _pkt_factory; }