// // Copyright 2017 Ettus Research (National Instruments) // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "mpmd_impl.hpp" #include "rpc_block_ctrl.hpp" #include <../device3/device3_impl.hpp> #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; namespace { /************************************************************************* * Local constants ************************************************************************/ const size_t MPMD_CROSSBAR_MAX_LADDR = 255; //! How long we wait for discovery responses (in seconds) const double MPMD_FIND_TIMEOUT = 0.5; //! Most pessimistic time for a CHDR query to go to device and back const double MPMD_CHDR_MAX_RTT = 0.02; /************************************************************************* * Helper functions ************************************************************************/ uhd::usrp::component_file_t _update_component( const uhd::usrp::component_file_t& comp, mpmd_mboard_impl *mb ) { std::vector data = comp.data; std::map metadata; for (const auto& key : comp.metadata.keys()) { metadata[key] = comp.metadata[key]; } mb->rpc->notify_with_token("update_component", metadata, data); uhd::usrp::component_file_t comp_copy; comp_copy.metadata = comp.metadata; return comp_copy; } void init_property_tree( uhd::property_tree::sptr tree, fs_path mb_path, mpmd_mboard_impl *mb ) { if (not tree->exists(fs_path("/name"))) { tree->create("/name") .set(mb->device_info.get("name", "Unknown MPM device")) ; } /*** Clocking *******************************************************/ tree->create(mb_path / "clock_source/value") .add_coerced_subscriber([mb](const std::string &clock_source){ mb->rpc->notify_with_token("set_clock_source", clock_source); }) .set_publisher([mb](){ return mb->rpc->request_with_token( "get_clock_source" ); }) ; tree->create>( mb_path / "clock_source/options") .set_publisher([mb](){ return mb->rpc->request_with_token>( "get_clock_sources" ); }) ; tree->create(mb_path / "time_source/value") .add_coerced_subscriber([mb](const std::string &time_source){ mb->rpc->notify_with_token("set_time_source", time_source); }) .set_publisher([mb](){ return mb->rpc->request_with_token( "get_time_source" ); }) ; tree->create>( mb_path / "time_source/options") .set_publisher([mb](){ return mb->rpc->request_with_token>( "get_time_sources" ); }) ; /*** Sensors ********************************************************/ auto sensor_list = mb->rpc->request_with_token>( "get_mb_sensors" ); UHD_LOG_DEBUG("MPMD", "Found " << sensor_list.size() << " motherboard sensors." ); for (const auto& sensor_name : sensor_list) { UHD_LOG_TRACE("MPMD", "Adding motherboard sensor `" << sensor_name << "'" ); tree->create( mb_path / "sensors" / sensor_name) .set_publisher([mb, sensor_name](){ return sensor_value_t( mb->rpc->request_with_token( "get_mb_sensor", sensor_name ) ); }) .set_coercer([](const sensor_value_t &){ throw uhd::runtime_error( "Trying to write read-only sensor value!" ); return sensor_value_t("", "", ""); }) ; } /*** EEPROM *********************************************************/ tree->create(mb_path / "eeprom") .add_coerced_subscriber([mb](const uhd::usrp::mboard_eeprom_t& mb_eeprom){ eeprom_map_t eeprom_map; for (const auto& key : mb_eeprom.keys()) { eeprom_map[key] = mb_eeprom[key]; } mb->rpc->notify_with_token("set_mb_eeprom", eeprom_map); }) .set_publisher([mb](){ auto mb_eeprom = mb->rpc->request_with_token>( "get_mb_eeprom" ); uhd::usrp::mboard_eeprom_t mb_eeprom_dict( mb_eeprom.cbegin(), mb_eeprom.cend() ); return mb_eeprom_dict; }) ; /*** Updateable Components ******************************************/ std::vector updateable_components = mb->rpc->request>( "list_updateable_components" ); UHD_LOG_DEBUG("MPMD", "Found " << updateable_components.size() << " updateable motherboard components." ); for (const auto& comp_name : updateable_components) { UHD_LOG_TRACE("MPMD", "Adding motherboard component: " << comp_name); tree->create(mb_path / "components" / comp_name) .set_coercer([mb](const uhd::usrp::component_file_t& comp_file) { return _update_component( comp_file, mb ); }) ; } } void reset_time_synchronized(uhd::property_tree::sptr tree) { const size_t n_mboards = tree->list("/mboards").size(); UHD_LOGGER_DEBUG("MPMD") << "Synchronizing " << n_mboards <<" timekeepers..."; auto get_time_last_pps = [tree](){ return tree->access( fs_path("/mboards/0/time/pps") ).get(); }; auto end_time = std::chrono::steady_clock::now() + std::chrono::milliseconds(1100); auto time_last_pps = get_time_last_pps(); UHD_LOG_DEBUG("MPMD", "Waiting for PPS clock edge..."); while (time_last_pps == get_time_last_pps()) { if (std::chrono::steady_clock::now() > end_time) { throw uhd::runtime_error( "Board 0 may not be getting a PPS signal!\n" "No PPS detected within the time interval.\n" "See the application notes for your device.\n" ); } std::this_thread::sleep_for(std::chrono::milliseconds(10)); } UHD_LOG_DEBUG("MPMD", "Setting all timekeepers to 0..."); for (size_t mboard_idx = 0; mboard_idx < n_mboards; mboard_idx++) { tree->access( fs_path("/mboards") / mboard_idx / "time" / "pps" ).set(time_spec_t(0.0)); } UHD_LOG_DEBUG("MPMD", "Waiting for next PPS edge..."); std::this_thread::sleep_for(std::chrono::seconds(1)); UHD_LOG_DEBUG("MPMD", "Verifying all timekeepers are aligned..."); auto get_time_now = [tree](const size_t mb_index){ return tree->access( fs_path("/mboards") / mb_index / "time/now" ).get(); }; for (size_t m = 1; m < n_mboards; m++){ time_spec_t time_0 = get_time_now(0); time_spec_t time_i = get_time_now(m); if (time_i < time_0 or (time_i - time_0) > time_spec_t(MPMD_CHDR_MAX_RTT)) { UHD_LOGGER_WARNING("MULTI_USRP") << boost::format( "Detected time deviation between board %d and board 0.\n" "Board 0 time is %f seconds.\n" "Board %d time is %f seconds.\n" ) % m % time_0.get_real_secs() % m % time_i.get_real_secs(); } } } } /***************************************************************************** * Structors ****************************************************************************/ mpmd_impl::mpmd_impl(const device_addr_t& device_args) : usrp::device3_impl() , _device_args(device_args) , _sid_framer(0) { UHD_LOGGER_INFO("MPMD") << "Initializing device with args: " << device_args.to_string(); for (const std::string& key : device_args.keys()) { if (key.find("recv") != std::string::npos) { recv_args[key] = device_args[key]; } if (key.find("send") != std::string::npos) { send_args[key] = device_args[key]; } } const device_addrs_t mb_args = separate_device_addr(device_args); _mb.reserve(mb_args.size()); // This can theoretically be parallelized, but then we want to make sure // we're distributing crossbar local addresses in some orderly fashion. // At the very least, _xbar_local_addr_ctr needs to become atomic. for (size_t mb_i = 0; mb_i < mb_args.size(); ++mb_i) { _mb.push_back(setup_mb(mb_i, mb_args[mb_i])); } // Init the prop tree before the blocks get set up -- they might need access // to some of the properties. This also means that the prop tree is pristine // at this point in time. for (size_t mb_i = 0; mb_i < mb_args.size(); ++mb_i) { init_property_tree(_tree, fs_path("/mboards") / mb_i, _mb[mb_i].get()); } if (not device_args.has_key("skip_init")) { // This might be parallelized. std::tasks would probably be a good way to // do that if we want to. for (size_t mb_i = 0; mb_i < mb_args.size(); ++mb_i) { setup_rfnoc_blocks(mb_i, mb_args[mb_i]); } // FIXME this section only makes sense for when the time source is external. // So, check for that, or something similar. // This section of code assumes that the prop tree is set and we have access // to the timekeepers. So don't move it anywhere else. if (device_args.has_key("sync_time")) { reset_time_synchronized(_tree); } auto filtered_block_args = device_args; // TODO actually filter // Blocks will finalize their own setup in this function. They have (and // might need) full access to the prop tree, the timekeepers, etc. setup_rpc_blocks(filtered_block_args); } else { UHD_LOG_INFO("MPMD", "Claimed device without full initialization."); } } mpmd_impl::~mpmd_impl() { /* nop */ } /***************************************************************************** * Private methods ****************************************************************************/ mpmd_mboard_impl::uptr mpmd_impl::setup_mb( const size_t mb_index, const uhd::device_addr_t& device_args ) { UHD_LOGGER_DEBUG("MPMD") << "Initializing mboard " << mb_index << ". Device args: " << device_args.to_string() ; auto mb = mpmd_mboard_impl::make( device_args, device_args["addr"] ); if (device_args.has_key("skip_init")) { return mb; } for (size_t xbar_index = 0; xbar_index < mb->num_xbars; xbar_index++) { mb->set_xbar_local_addr(xbar_index, allocate_xbar_local_addr()); } const fs_path mb_path = fs_path("/mboards") / mb_index; _tree->create(mb_path / "name") .set(mb->device_info.get("type", "UNKNOWN")); _tree->create(mb_path / "serial") .set(mb->device_info.get("serial", "n/a")); _tree->create(mb_path / "connection") .set(mb->device_info.get("connection", "remote")); // Do real MTU discovery (something similar like X300 but with MPM) _tree->create(mb_path / "mtu/recv").set(1500); _tree->create(mb_path / "mtu/send").set(1500); _tree->create(mb_path / "link_max_rate").set(1e9 / 8); // query more information about FPGA/MPM // Query time/clock sources on mboards/dboards // Throw rpc calls with boost bind into the property tree? // implicit move return mb; } void mpmd_impl::setup_rfnoc_blocks( const size_t mb_index, const uhd::device_addr_t& ctrl_xport_args ) { auto &mb = _mb[mb_index]; mb->num_xbars = mb->rpc->request("get_num_xbars"); UHD_LOG_TRACE("MPM", "Mboard " << mb_index << " reports " << mb->num_xbars << " crossbar(s)." ); for (size_t xbar_index = 0; xbar_index < mb->num_xbars; xbar_index++) { const size_t num_blocks = mb->rpc->request("get_num_blocks", xbar_index); const size_t base_port = mb->rpc->request("get_base_port", xbar_index); const size_t local_addr = mb->get_xbar_local_addr(xbar_index); UHD_LOGGER_TRACE("MPMD") << "Enumerating RFNoC blocks for xbar " << xbar_index << ". Total blocks: " << num_blocks << " Base port: " << base_port << " Local address: " << local_addr ; try { enumerate_rfnoc_blocks( mb_index, num_blocks, base_port, uhd::sid_t(0, 0, local_addr, 0), ctrl_xport_args ); } catch (const std::exception &ex) { UHD_LOGGER_ERROR("MPMD") << "Failure during block enumeration: " << ex.what(); throw uhd::runtime_error("Failed to run enumerate_rfnoc_blocks()"); } } } void mpmd_impl::setup_rpc_blocks(const device_addr_t &block_args) { // This could definitely be parallelized. Blocks may do all sorts of stuff // inside set_rpc_client(), and it can take any amount of time (I mean, // like, seconds). for (const auto &block_ctrl: _rfnoc_block_ctrl) { auto rpc_block_id = block_ctrl->get_block_id(); if (has_block(block_ctrl->get_block_id())) { const size_t mboard_idx = rpc_block_id.get_device_no(); UHD_LOGGER_DEBUG("MPMD") << "Adding RPC access to block: " << rpc_block_id << " Block args: " << block_args.to_string() ; get_block_ctrl(rpc_block_id) ->set_rpc_client(_mb[mboard_idx]->rpc, block_args); } } } size_t mpmd_impl::allocate_xbar_local_addr() { const size_t new_local_addr = _xbar_local_addr_ctr++; if (new_local_addr > MPMD_CROSSBAR_MAX_LADDR) { throw uhd::runtime_error("Too many crossbars."); } return new_local_addr; } /***************************************************************************** * Find, Factory & Registry ****************************************************************************/ device_addrs_t mpmd_find_with_addr(const device_addr_t& hint_) { transport::udp_simple::sptr comm = transport::udp_simple::make_broadcast( hint_["addr"], std::to_string(MPM_DISCOVERY_PORT)); comm->send( boost::asio::buffer(&MPM_DISCOVERY_CMD, sizeof(MPM_DISCOVERY_CMD))); device_addrs_t addrs; while (true) { char buff[4096] = {}; const size_t nbytes = comm->recv( // TODO make sure we don't buf overflow boost::asio::buffer(buff), MPMD_FIND_TIMEOUT ); if (nbytes == 0) { break; } const char* reply = (const char*)buff; std::string reply_string = std::string(reply); std::vector result; boost::algorithm::split(result, reply_string, [](const char& in) { return in == ';'; }, boost::token_compress_on); if (result.empty()) { continue; } // who else is reposending to our request !? if (result[0] != "USRP-MPM") { continue; } const std::string recv_addr = comm->get_recv_addr(); // remove external iface addrs if executed directly on device bool external_iface = false; for (const auto& addr : transport::get_if_addrs()) { if ((addr.inet == comm->get_recv_addr()) && recv_addr != boost::asio::ip::address_v4::loopback().to_string()) { external_iface = true; } } if (external_iface) { continue; } device_addr_t new_addr; new_addr["addr"] = recv_addr; new_addr["type"] = "mpmd"; // hwd will overwrite this // remove ident string and put other informations into device_args dict result.erase(result.begin()); // parse key-value pairs in the discovery string and add them to the // device_args for (const auto& el : result) { std::vector value; boost::algorithm::split(value, el, [](const char& in) { return in == '='; }, boost::token_compress_on); new_addr[value[0]] = value[1]; } // filter the discovered device below by matching optional keys if ( (not hint_.has_key("name") or hint_["name"] == new_addr["name"]) and (not hint_.has_key("serial") or hint_["serial"] == new_addr["serial"]) and (not hint_.has_key("type") or hint_["type"] == new_addr["type"]) and (not hint_.has_key("product") or hint_["product"] == new_addr["product"]) ){ addrs.push_back(new_addr); } else { UHD_LOG_DEBUG("MPMD FIND", "Found device, but does not match hint: " << recv_addr ); } } return addrs; }; device_addrs_t mpmd_find(const device_addr_t& hint_) { // handle cases: // // - empty hint // - multiple addrs // - single addr device_addrs_t hints = separate_device_addr(hint_); // either hints has: // multiple entries // -> search for multiple devices and join them back into one // device_addr_t // one entry with addr: // -> search for one device with this addr // one // multiple addrs if (hints.size() > 1) { device_addrs_t found_devices; found_devices.reserve(hints.size()); for (const auto& hint : hints) { if (not hint.has_key("addr")) { // maybe allow other attributes as well return device_addrs_t(); } device_addrs_t reply_addrs = mpmd_find_with_addr(hint); if (reply_addrs.size() > 1) { throw uhd::value_error( str(boost::format("Could not resolve device hint \"%s\" to " "a single device.") % hint.to_string())); } else if (reply_addrs.empty()) { return device_addrs_t(); } found_devices.push_back(reply_addrs[0]); } return device_addrs_t(1, combine_device_addrs(found_devices)); } hints.resize(1); device_addr_t hint = hints[0]; device_addrs_t addrs; if (hint.has_key("addr")) { // is this safe? return mpmd_find_with_addr(hint); } for (const transport::if_addrs_t& if_addr : transport::get_if_addrs()) { device_addr_t new_hint = hint; new_hint["addr"] = if_addr.bcast; device_addrs_t reply_addrs = mpmd_find_with_addr(new_hint); addrs.insert(addrs.begin(), reply_addrs.begin(), reply_addrs.end()); } return addrs; } static device::sptr mpmd_make(const device_addr_t& device_args) { return device::sptr(boost::make_shared(device_args)); } UHD_STATIC_BLOCK(register_mpmd_device) { device::register_device(&mpmd_find, &mpmd_make, device::USRP); } // vim: sw=4 expandtab: