//
// Copyright 2010-2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
/***********************************************************************
* Constants
**********************************************************************/
static const size_t SERIAL_LEN = 9;
static const size_t NAME_MAX_LEN = 32 - SERIAL_LEN;
/***********************************************************************
* Utility functions
**********************************************************************/
//! A wrapper around std::copy that takes ranges instead of iterators.
template inline
void byte_copy(const RangeSrc &src, RangeDst &dst){
std::copy(boost::begin(src), boost::end(src), boost::begin(dst));
}
//! create a string from a byte vector, return empty if invalid ascii
static const std::string bytes_to_string(const byte_vector_t &bytes){
std::string out;
BOOST_FOREACH(boost::uint8_t byte, bytes){
if (byte < 32 or byte > 127) return out;
out += byte;
}
return out;
}
//! create a byte vector from a string, null terminate unless max length
static const byte_vector_t string_to_bytes(const std::string &string, size_t max_length){
byte_vector_t bytes;
for (size_t i = 0; i < std::min(string.size(), max_length); i++){
bytes.push_back(string[i]);
}
if (bytes.size() < max_length - 1) bytes.push_back('\0');
return bytes;
}
//! convert a string to a byte vector to write to eeprom
static byte_vector_t string_to_uint16_bytes(const std::string &num_str){
const boost::uint16_t num = boost::lexical_cast(num_str);
const byte_vector_t lsb_msb = boost::assign::list_of
(boost::uint8_t(num >> 0))(boost::uint8_t(num >> 8));
return lsb_msb;
}
//! convert a byte vector read from eeprom to a string
static std::string uint16_bytes_to_string(const byte_vector_t &bytes){
const boost::uint16_t num = (boost::uint16_t(bytes.at(0)) << 0) | (boost::uint16_t(bytes.at(1)) << 8);
return (num == 0 or num == 0xffff)? "" : boost::lexical_cast(num);
}
/***********************************************************************
* Implementation of N100 load/store
**********************************************************************/
static const boost::uint8_t N100_EEPROM_ADDR = 0x50;
struct n100_eeprom_map{
boost::uint16_t hardware;
boost::uint8_t mac_addr[6];
boost::uint32_t subnet;
boost::uint32_t ip_addr;
boost::uint16_t _pad0;
boost::uint16_t revision;
boost::uint16_t product;
unsigned char _pad1;
unsigned char gpsdo;
unsigned char serial[SERIAL_LEN];
unsigned char name[NAME_MAX_LEN];
boost::uint32_t gateway;
};
enum n200_gpsdo_type{
N200_GPSDO_NONE = 0,
N200_GPSDO_INTERNAL = 1,
N200_GPSDO_ONBOARD = 2
};
static void load_n100(mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//extract the hardware number
mb_eeprom["hardware"] = uint16_bytes_to_string(
iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, hardware), 2)
);
//extract the revision number
mb_eeprom["revision"] = uint16_bytes_to_string(
iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, revision), 2)
);
//extract the product code
mb_eeprom["product"] = uint16_bytes_to_string(
iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, product), 2)
);
//extract the addresses
mb_eeprom["mac-addr"] = mac_addr_t::from_bytes(iface.read_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, mac_addr), 6
)).to_string();
boost::asio::ip::address_v4::bytes_type ip_addr_bytes;
byte_copy(iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, ip_addr), 4), ip_addr_bytes);
mb_eeprom["ip-addr"] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
byte_copy(iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, subnet), 4), ip_addr_bytes);
mb_eeprom["subnet"] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
byte_copy(iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, gateway), 4), ip_addr_bytes);
mb_eeprom["gateway"] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
//gpsdo capabilities
boost::uint8_t gpsdo_byte = iface.read_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, gpsdo), 1).at(0);
switch(n200_gpsdo_type(gpsdo_byte)){
case N200_GPSDO_INTERNAL: mb_eeprom["gpsdo"] = "internal"; break;
case N200_GPSDO_ONBOARD: mb_eeprom["gpsdo"] = "onboard"; break;
default: mb_eeprom["gpsdo"] = "none";
}
//extract the serial
mb_eeprom["serial"] = bytes_to_string(iface.read_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, serial), SERIAL_LEN
));
//extract the name
mb_eeprom["name"] = bytes_to_string(iface.read_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, name), NAME_MAX_LEN
));
//Empty serial correction: use the mac address to determine serial.
//Older usrp2 models don't have a serial burned into EEPROM.
//The lower mac address bits will function as the serial number.
if (mb_eeprom["serial"].empty()){
byte_vector_t mac_addr_bytes = mac_addr_t::from_string(mb_eeprom["mac-addr"]).to_bytes();
unsigned serial = mac_addr_bytes.at(5) | (unsigned(mac_addr_bytes.at(4) & 0x0f) << 8);
mb_eeprom["serial"] = boost::lexical_cast(serial);
}
}
static void store_n100(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//parse the revision number
if (mb_eeprom.has_key("hardware")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, hardware),
string_to_uint16_bytes(mb_eeprom["hardware"])
);
//parse the revision number
if (mb_eeprom.has_key("revision")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, revision),
string_to_uint16_bytes(mb_eeprom["revision"])
);
//parse the product code
if (mb_eeprom.has_key("product")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, product),
string_to_uint16_bytes(mb_eeprom["product"])
);
//store the addresses
if (mb_eeprom.has_key("mac-addr")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, mac_addr),
mac_addr_t::from_string(mb_eeprom["mac-addr"]).to_bytes()
);
if (mb_eeprom.has_key("ip-addr")){
byte_vector_t ip_addr_bytes(4);
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["ip-addr"]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, ip_addr), ip_addr_bytes);
}
if (mb_eeprom.has_key("subnet")){
byte_vector_t ip_addr_bytes(4);
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["subnet"]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, subnet), ip_addr_bytes);
}
if (mb_eeprom.has_key("gateway")){
byte_vector_t ip_addr_bytes(4);
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["gateway"]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, gateway), ip_addr_bytes);
}
//gpsdo capabilities
if (mb_eeprom.has_key("gpsdo")){
boost::uint8_t gpsdo_byte = N200_GPSDO_NONE;
if (mb_eeprom["gpsdo"] == "internal") gpsdo_byte = N200_GPSDO_INTERNAL;
if (mb_eeprom["gpsdo"] == "onboard") gpsdo_byte = N200_GPSDO_ONBOARD;
iface.write_eeprom(N100_EEPROM_ADDR, offsetof(n100_eeprom_map, gpsdo), byte_vector_t(1, gpsdo_byte));
}
//store the serial
if (mb_eeprom.has_key("serial")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, serial),
string_to_bytes(mb_eeprom["serial"], SERIAL_LEN)
);
//store the name
if (mb_eeprom.has_key("name")) iface.write_eeprom(
N100_EEPROM_ADDR, offsetof(n100_eeprom_map, name),
string_to_bytes(mb_eeprom["name"], NAME_MAX_LEN)
);
}
/***********************************************************************
* Implementation of X300 load/store
**********************************************************************/
static const boost::uint8_t X300_EEPROM_ADDR = 0x50;
struct x300_eeprom_map
{
//indentifying numbers
unsigned char revision[2];
unsigned char product[2];
boost::uint8_t _pad0[4];
//all the mac addrs
boost::uint8_t mac_addr0[6];
boost::uint8_t _pad1[2];
boost::uint8_t mac_addr1[6];
boost::uint8_t _pad2[2];
//all the IP addrs
boost::uint32_t gateway;
boost::uint32_t subnet[4];
boost::uint32_t ip_addr[4];
boost::uint8_t _pad3[16];
//names and serials
unsigned char name[NAME_MAX_LEN];
unsigned char serial[SERIAL_LEN];
};
static void load_x300(mboard_eeprom_t &mb_eeprom, i2c_iface &iface)
{
//extract the revision number
mb_eeprom["revision"] = uint16_bytes_to_string(
iface.read_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, revision), 2)
);
//extract the product code
mb_eeprom["product"] = uint16_bytes_to_string(
iface.read_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, product), 2)
);
//extract the mac addresses
mb_eeprom["mac-addr0"] = mac_addr_t::from_bytes(iface.read_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, mac_addr0), 6
)).to_string();
mb_eeprom["mac-addr1"] = mac_addr_t::from_bytes(iface.read_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, mac_addr1), 6
)).to_string();
//extract the ip addresses
boost::asio::ip::address_v4::bytes_type ip_addr_bytes;
byte_copy(iface.read_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, gateway), 4), ip_addr_bytes);
mb_eeprom["gateway"] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
for (size_t i = 0; i < 4; i++)
{
const std::string n(1, i+'0');
byte_copy(iface.read_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, ip_addr)+(i*4), 4), ip_addr_bytes);
mb_eeprom["ip-addr"+n] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
byte_copy(iface.read_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, subnet)+(i*4), 4), ip_addr_bytes);
mb_eeprom["subnet"+n] = boost::asio::ip::address_v4(ip_addr_bytes).to_string();
}
//extract the serial
mb_eeprom["serial"] = bytes_to_string(iface.read_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, serial), SERIAL_LEN
));
//extract the name
mb_eeprom["name"] = bytes_to_string(iface.read_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, name), NAME_MAX_LEN
));
}
static void store_x300(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface)
{
//parse the revision number
if (mb_eeprom.has_key("revision")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, revision),
string_to_uint16_bytes(mb_eeprom["revision"])
);
//parse the product code
if (mb_eeprom.has_key("product")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, product),
string_to_uint16_bytes(mb_eeprom["product"])
);
//store the mac addresses
if (mb_eeprom.has_key("mac-addr0")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, mac_addr0),
mac_addr_t::from_string(mb_eeprom["mac-addr0"]).to_bytes()
);
if (mb_eeprom.has_key("mac-addr1")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, mac_addr1),
mac_addr_t::from_string(mb_eeprom["mac-addr1"]).to_bytes()
);
//store the ip addresses
byte_vector_t ip_addr_bytes(4);
if (mb_eeprom.has_key("gateway")){
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["gateway"]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, gateway), ip_addr_bytes);
}
for (size_t i = 0; i < 4; i++)
{
const std::string n(1, i+'0');
if (mb_eeprom.has_key("ip-addr"+n)){
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["ip-addr"+n]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, ip_addr)+(i*4), ip_addr_bytes);
}
if (mb_eeprom.has_key("subnet"+n)){
byte_copy(boost::asio::ip::address_v4::from_string(mb_eeprom["subnet"+n]).to_bytes(), ip_addr_bytes);
iface.write_eeprom(X300_EEPROM_ADDR, offsetof(x300_eeprom_map, subnet)+(i*4), ip_addr_bytes);
}
}
//store the serial
if (mb_eeprom.has_key("serial")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, serial),
string_to_bytes(mb_eeprom["serial"], SERIAL_LEN)
);
//store the name
if (mb_eeprom.has_key("name")) iface.write_eeprom(
X300_EEPROM_ADDR, offsetof(x300_eeprom_map, name),
string_to_bytes(mb_eeprom["name"], NAME_MAX_LEN)
);
}
/***********************************************************************
* Implementation of B000 load/store
**********************************************************************/
static const boost::uint8_t B000_EEPROM_ADDR = 0x50;
static const size_t B000_SERIAL_LEN = 8;
//use char array so we dont need to attribute packed
struct b000_eeprom_map{
unsigned char _r[221];
unsigned char mcr[4];
unsigned char name[NAME_MAX_LEN];
unsigned char serial[B000_SERIAL_LEN];
};
static void load_b000(mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//extract the serial
mb_eeprom["serial"] = bytes_to_string(iface.read_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, serial), B000_SERIAL_LEN
));
//extract the name
mb_eeprom["name"] = bytes_to_string(iface.read_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, name), NAME_MAX_LEN
));
//extract master clock rate as a 32-bit uint in Hz
boost::uint32_t master_clock_rate;
const byte_vector_t rate_bytes = iface.read_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, mcr), sizeof(master_clock_rate)
);
std::copy(
rate_bytes.begin(), rate_bytes.end(), //input
reinterpret_cast(&master_clock_rate) //output
);
master_clock_rate = ntohl(master_clock_rate);
if (master_clock_rate > 1e6 and master_clock_rate < 1e9){
mb_eeprom["mcr"] = boost::lexical_cast(master_clock_rate);
}
else mb_eeprom["mcr"] = "";
}
static void store_b000(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//store the serial
if (mb_eeprom.has_key("serial")) iface.write_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, serial),
string_to_bytes(mb_eeprom["serial"], B000_SERIAL_LEN)
);
//store the name
if (mb_eeprom.has_key("name")) iface.write_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, name),
string_to_bytes(mb_eeprom["name"], NAME_MAX_LEN)
);
//store the master clock rate as a 32-bit uint in Hz
if (mb_eeprom.has_key("mcr")){
boost::uint32_t master_clock_rate = boost::uint32_t(boost::lexical_cast(mb_eeprom["mcr"]));
master_clock_rate = htonl(master_clock_rate);
const byte_vector_t rate_bytes(
reinterpret_cast(&master_clock_rate),
reinterpret_cast(&master_clock_rate) + sizeof(master_clock_rate)
);
iface.write_eeprom(
B000_EEPROM_ADDR, offsetof(b000_eeprom_map, mcr), rate_bytes
);
}
}
/***********************************************************************
* Implementation of B100 load/store
**********************************************************************/
static const boost::uint8_t B100_EEPROM_ADDR = 0x50;
//use char array so we dont need to attribute packed
struct b100_eeprom_map{
unsigned char _r[220];
unsigned char revision[2];
unsigned char product[2];
unsigned char name[NAME_MAX_LEN];
unsigned char serial[SERIAL_LEN];
};
static void load_b100(mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//extract the revision number
mb_eeprom["revision"] = uint16_bytes_to_string(
iface.read_eeprom(B100_EEPROM_ADDR, offsetof(b100_eeprom_map, revision), 2)
);
//extract the product code
mb_eeprom["product"] = uint16_bytes_to_string(
iface.read_eeprom(B100_EEPROM_ADDR, offsetof(b100_eeprom_map, product), 2)
);
//extract the serial
mb_eeprom["serial"] = bytes_to_string(iface.read_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, serial), SERIAL_LEN
));
//extract the name
mb_eeprom["name"] = bytes_to_string(iface.read_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, name), NAME_MAX_LEN
));
}
static void store_b100(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//parse the revision number
if (mb_eeprom.has_key("revision")) iface.write_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, revision),
string_to_uint16_bytes(mb_eeprom["revision"])
);
//parse the product code
if (mb_eeprom.has_key("product")) iface.write_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, product),
string_to_uint16_bytes(mb_eeprom["product"])
);
//store the serial
if (mb_eeprom.has_key("serial")) iface.write_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, serial),
string_to_bytes(mb_eeprom["serial"], SERIAL_LEN)
);
//store the name
if (mb_eeprom.has_key("name")) iface.write_eeprom(
B100_EEPROM_ADDR, offsetof(b100_eeprom_map, name),
string_to_bytes(mb_eeprom["name"], NAME_MAX_LEN)
);
}
/***********************************************************************
* Implementation of B200 load/store
**********************************************************************/
/* On the B200, this field indicates the slave address. From the FX3, this
* address is always 0. */
static const boost::uint8_t B200_EEPROM_SLAVE_ADDR = 0x04;
//use char array so we dont need to attribute packed
struct b200_eeprom_map{
unsigned char _r[220];
unsigned char revision[2];
unsigned char product[2];
unsigned char name[NAME_MAX_LEN];
unsigned char serial[SERIAL_LEN];
};
static void load_b200(mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//extract the revision number
mb_eeprom["revision"] = uint16_bytes_to_string(
iface.read_eeprom(B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, revision), 2)
);
//extract the product code
mb_eeprom["product"] = uint16_bytes_to_string(
iface.read_eeprom(B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, product), 2)
);
//extract the serial
mb_eeprom["serial"] = bytes_to_string(iface.read_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, serial), SERIAL_LEN
));
//extract the name
mb_eeprom["name"] = bytes_to_string(iface.read_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, name), NAME_MAX_LEN
));
}
static void store_b200(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
//parse the revision number
if (mb_eeprom.has_key("revision")) iface.write_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, revision),
string_to_uint16_bytes(mb_eeprom["revision"])
);
//parse the product code
if (mb_eeprom.has_key("product")) iface.write_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, product),
string_to_uint16_bytes(mb_eeprom["product"])
);
//store the serial
if (mb_eeprom.has_key("serial")) iface.write_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, serial),
string_to_bytes(mb_eeprom["serial"], SERIAL_LEN)
);
//store the name
if (mb_eeprom.has_key("name")) iface.write_eeprom(
B200_EEPROM_SLAVE_ADDR, offsetof(b200_eeprom_map, name),
string_to_bytes(mb_eeprom["name"], NAME_MAX_LEN)
);
}
/***********************************************************************
* Implementation of E100 load/store
**********************************************************************/
static const boost::uint8_t E100_EEPROM_ADDR = 0x51;
struct e100_eeprom_map{
boost::uint16_t vendor;
boost::uint16_t device;
unsigned char revision;
unsigned char content;
unsigned char model[8];
unsigned char env_var[16];
unsigned char env_setting[64];
unsigned char serial[10];
unsigned char name[NAME_MAX_LEN];
};
template static const byte_vector_t to_bytes(const T &item){
return byte_vector_t(
reinterpret_cast(&item),
reinterpret_cast(&item)+sizeof(item)
);
}
#define sizeof_member(struct_name, member_name) \
sizeof(reinterpret_cast(NULL)->member_name)
static void load_e100(mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
const size_t num_bytes = offsetof(e100_eeprom_map, model);
byte_vector_t map_bytes = iface.read_eeprom(E100_EEPROM_ADDR, 0, num_bytes);
e100_eeprom_map map; std::memcpy(&map, &map_bytes[0], map_bytes.size());
mb_eeprom["vendor"] = boost::lexical_cast(uhd::ntohx(map.vendor));
mb_eeprom["device"] = boost::lexical_cast(uhd::ntohx(map.device));
mb_eeprom["revision"] = boost::lexical_cast(unsigned(map.revision));
mb_eeprom["content"] = boost::lexical_cast(unsigned(map.content));
#define load_e100_string_xx(key) mb_eeprom[#key] = bytes_to_string(iface.read_eeprom( \
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, key), sizeof_member(e100_eeprom_map, key) \
));
load_e100_string_xx(model);
load_e100_string_xx(env_var);
load_e100_string_xx(env_setting);
load_e100_string_xx(serial);
load_e100_string_xx(name);
}
static void store_e100(const mboard_eeprom_t &mb_eeprom, i2c_iface &iface){
if (mb_eeprom.has_key("vendor")) iface.write_eeprom(
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, vendor),
to_bytes(uhd::htonx(boost::lexical_cast(mb_eeprom["vendor"])))
);
if (mb_eeprom.has_key("device")) iface.write_eeprom(
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, device),
to_bytes(uhd::htonx(boost::lexical_cast(mb_eeprom["device"])))
);
if (mb_eeprom.has_key("revision")) iface.write_eeprom(
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, revision),
byte_vector_t(1, boost::lexical_cast(mb_eeprom["revision"]))
);
if (mb_eeprom.has_key("content")) iface.write_eeprom(
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, content),
byte_vector_t(1, boost::lexical_cast(mb_eeprom["content"]))
);
#define store_e100_string_xx(key) if (mb_eeprom.has_key(#key)) iface.write_eeprom( \
E100_EEPROM_ADDR, offsetof(e100_eeprom_map, key), \
string_to_bytes(mb_eeprom[#key], sizeof_member(e100_eeprom_map, key)) \
);
store_e100_string_xx(model);
store_e100_string_xx(env_var);
store_e100_string_xx(env_setting);
store_e100_string_xx(serial);
store_e100_string_xx(name);
}
/***********************************************************************
* Implementation of mboard eeprom
**********************************************************************/
mboard_eeprom_t::mboard_eeprom_t(void){
/* NOP */
}
mboard_eeprom_t::mboard_eeprom_t(i2c_iface &iface, const std::string &which){
if (which == "N100") load_n100(*this, iface);
if (which == "X300") load_x300(*this, iface);
if (which == "B000") load_b000(*this, iface);
if (which == "B100") load_b100(*this, iface);
if (which == "B200") load_b200(*this, iface);
if (which == "E100") load_e100(*this, iface);
}
void mboard_eeprom_t::commit(i2c_iface &iface, const std::string &which) const{
if (which == "N100") store_n100(*this, iface);
if (which == "X300") store_x300(*this, iface);
if (which == "B000") store_b000(*this, iface);
if (which == "B100") store_b100(*this, iface);
if (which == "B200") store_b200(*this, iface);
if (which == "E100") store_e100(*this, iface);
}