//
// Copyright 2015-2016 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "e3xx_radio_ctrl_impl.hpp"
#include "e300_defaults.hpp"
#include "e300_regs.hpp"
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::rfnoc;
using namespace uhd::usrp::e300;
using uhd::usrp::dboard_iface;
//! mapping of frontend to radio perif index
static const size_t FE0 = 1;
static const size_t FE1 = 0;
/****************************************************************************
* Structors
***************************************************************************/
UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(e3xx_radio_ctrl)
{
UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::ctor() " << std::endl;
////////////////////////////////////////////////////////////////////
// Set up peripherals
////////////////////////////////////////////////////////////////////
for (size_t i = 0; i < _get_num_radios(); i++) {
if (i == 0) {
_spi = spi_core_3000::make(_get_ctrl(i), regs::sr_addr(regs::SPI), regs::RB_SPI);
_spi->set_divider(6);
}
_e3xx_perifs[i].atr = usrp::gpio_atr::gpio_atr_3000::make_write_only(_get_ctrl(i), regs::sr_addr(regs::GPIO));
_e3xx_perifs[i].leds = usrp::gpio_atr::gpio_atr_3000::make_write_only(_get_ctrl(i), regs::sr_addr(regs::LEDS));
_e3xx_perifs[i].leds->set_atr_mode(usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
////////////////////////////////////////////////////////////////////
// Time source
////////////////////////////////////////////////////////////////////
_tree->create("time_source/value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::_update_time_source, this, _1))
.set(DEFAULT_TIME_SRC);
#ifdef E300_GPSD
static const std::vector time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo");
#else
static const std::vector time_sources = boost::assign::list_of("none")("internal")("external");
#endif
_tree->create >("time_source/options").set(time_sources);
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
{
const fs_path codec_path = fs_path("rx_codecs") / "A";
_tree->create(codec_path / "name").set("E3x0 RX dual ADC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
{
const fs_path codec_path = fs_path("tx_codecs") / "A";
_tree->create(codec_path / "name").set("E3x0 TX dual DAC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
////////////////////////////////////////////////////////////////////
// internal gpios
////////////////////////////////////////////////////////////////////
UHD_RFNOC_BLOCK_TRACE() << " Creating internal GPIOs..." << std::endl;
usrp::gpio_atr::gpio_atr_3000::sptr fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(
get_ctrl_iface(0),
regs::sr_addr(regs::FP_GPIO),
regs::RB_FP_GPIO
);
for (const auto& attr : usrp::gpio_atr::gpio_attr_map) {
switch (attr.first) {
case usrp::gpio_atr::GPIO_SRC:
_tree->create>(fs_path("gpio") / "INT0" / attr.second)
.set(std::vector(32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this](const std::vector&){
throw uhd::runtime_error("This device does not support setting the GPIO_SRC attribute.");
});
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree->create>(fs_path("gpio") / "INT0" / attr.second)
.set(std::vector(32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this, fp_gpio, attr](const std::vector str_val){
uint32_t val = 0;
for(size_t i = 0 ; i < str_val.size() ; i++){
val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second).at(str_val[i])<set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK:
_tree->create(fs_path("gpio") / "INT0" / "READBACK")
.set_publisher([this, fp_gpio](){
return fp_gpio->read_gpio();
});
break;
default:
_tree->create(fs_path("gpio") / "INT0" / attr.second)
.set(0)
.add_coerced_subscriber([this, fp_gpio, attr](const uint32_t val){
fp_gpio->set_gpio_attr(attr.first, val);
});
}
}
////////////////////////////////////////////////////////////////////
// Tick rate
////////////////////////////////////////////////////////////////////
UHD_RFNOC_BLOCK_TRACE() << " Setting tick rate..." << std::endl;
_tree->access("tick_rate")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1))
.set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_rate, this))
;
}
e3xx_radio_ctrl_impl::~e3xx_radio_ctrl_impl()
{
const std::string _radio_slot = "A";
// Tear down our part of the tree:
_tree->remove(fs_path("rx_codecs" / _radio_slot));
_tree->remove(fs_path("tx_codecs" / _radio_slot));
for (size_t i = 0; i < _get_num_radios(); i++) {
if (_tree->exists(fs_path("tx_dsps") / i)) {
_tree->remove(fs_path("tx_dsps") / i);
}
if (_tree->exists(fs_path("rx_dsps") / i)) {
_tree->remove(fs_path("rx_dsps") / i);
}
}
for (const auto attr : usrp::gpio_atr::gpio_attr_map) {
const auto gpio_fs_path = fs_path("gpio") / "INT0" / attr.second;
if (_tree->exists(gpio_fs_path)) {
_tree->remove(gpio_fs_path);
}
}
}
/****************************************************************************
* API calls
***************************************************************************/
double e3xx_radio_ctrl_impl::set_rate(double rate)
{
//UHD_LOGGER_DEBUG("E300") << "Setting SPI divider to " << ceil(rate/AD9361_SPI_RATE) << "\n";
//_spi->set_divider(ceil(rate/AD9361_SPI_RATE)); // ceil() to prevent less than 1 rounding to 0
UHD_LOGGER_DEBUG("E300") << "Asking for clock rate " << rate/1e6 << " MHz\n";
double actual_tick_rate = _codec_ctrl->set_clock_rate(rate);
UHD_LOGGER_DEBUG("E300") << "Actually got clock rate " << actual_tick_rate/1e6 << " MHz\n";
actual_tick_rate = radio_ctrl_impl::set_rate(actual_tick_rate);
if (not check_radio_config()) {
throw std::runtime_error(str(
boost::format("[%s]: Invalid radio configuration.")
% unique_id()
));
}
return actual_tick_rate;
}
/*! Select TX antenna \p for channel \p chan.
*/
void e3xx_radio_ctrl_impl::set_tx_antenna(const std::string &ant, const size_t chan)
{
std::lock_guard lock(_mutex);
if (ant != "TX/RX")
throw uhd::value_error("Unknown TX antenna option: " + ant);
radio_ctrl_impl::set_tx_antenna(ant, chan);
}
/*! Select RX antenna \p for channel \p chan.
*/
void e3xx_radio_ctrl_impl::set_rx_antenna(const std::string &ant, const size_t chan)
{
std::lock_guard lock(_mutex);
if (ant != "TX/RX" and ant != "RX2")
throw uhd::value_error("Unknown RX antenna option: " + ant);
radio_ctrl_impl::set_rx_antenna(ant, chan);
this->_update_atrs();
this->_update_atr_leds(_e3xx_perifs[chan].leds, ant);
}
double e3xx_radio_ctrl_impl::set_tx_frequency(const double freq, const size_t)
{
return _tree->access(fs_path("dboards/A/tx_frontends/A/freq/value")).set(freq).get();
}
double e3xx_radio_ctrl_impl::set_rx_frequency(const double freq, const size_t)
{
return _tree->access(fs_path("dboards/A/rx_frontends/A/freq/value")).set(freq).get();
}
double e3xx_radio_ctrl_impl::set_tx_gain(const double gain, const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
double new_gain = _tree->access(fs_path("dboards/A/tx_frontends/" + fe_side + "/gains/PGA/value")).set(gain).get();
return radio_ctrl_impl::set_tx_gain(new_gain, chan);
}
double e3xx_radio_ctrl_impl::set_rx_gain(const double gain, const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
double new_gain = _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/gains/PGA/value")).set(gain).get();
return radio_ctrl_impl::set_rx_gain(new_gain, chan);
}
double e3xx_radio_ctrl_impl::set_rx_bandwidth(const double bandwidth, const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
double new_bw = _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/bandwidth/value")).set(bandwidth).get();
return radio_ctrl_impl::set_rx_bandwidth(new_bw, chan);
}
double e3xx_radio_ctrl_impl::get_tx_gain(const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
return _tree->access(fs_path("dboards/A/tx_frontends/" + fe_side + "/gains/PGA/value")).get();
}
double e3xx_radio_ctrl_impl::get_rx_gain(const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
return _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/gains/PGA/value")).get();
}
double e3xx_radio_ctrl_impl::get_rx_bandwidth(const size_t chan)
{
const std::string fe_side = (chan == 0) ? "A" : "B";
return _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/bandwidth/value")).get();
}
std::vector e3xx_radio_ctrl_impl::get_gpio_banks() const
{
std::vector banks = boost::assign::list_of("INT0");
return banks;
}
void e3xx_radio_ctrl_impl::set_gpio_attr(
const std::string &bank,
const std::string &attr,
const uint32_t value,
const uint32_t mask
) {
if (bank == "INT0") {
const uint32_t current = _tree->access(fs_path("gpio") / bank / attr).get();
const uint32_t new_value = (current & ~mask) | (value & mask);
_tree->access(fs_path("gpio") / bank / attr).set(new_value);
return;
}
}
uint32_t e3xx_radio_ctrl_impl::get_gpio_attr(
const std::string &bank,
const std::string &attr
) {
if (bank == "INT0") {
return uint32_t(_tree->access(fs_path("gpio") / bank / attr).get());
}
return 0;
}
size_t e3xx_radio_ctrl_impl::get_chan_from_dboard_fe(const std::string &fe, const direction_t)
{
return (fe == "A") ? 0 : 1;
}
std::string e3xx_radio_ctrl_impl::get_dboard_fe_from_chan(const size_t chan, const direction_t)
{
return (chan == 0) ? "A" : "B";
}
/****************************************************************************
* Radio control and setup
***************************************************************************/
void e3xx_radio_ctrl_impl::setup_radio(uhd::usrp::ad9361_ctrl::sptr safe_codec_ctrl)
{
{
std::lock_guard lock(_mutex);
if (_codec_ctrl) {
throw std::runtime_error("Attempting to set up radio twice!");
}
}
////////////////////////////////////////////////////////////////////
// Create timed interface
////////////////////////////////////////////////////////////////////
_codec_ctrl = safe_codec_ctrl;
_codec_mgr = uhd::usrp::ad936x_manager::make(_codec_ctrl, _get_num_radios());
////////////////////////////////////////////////////////////////////
// setup radios
////////////////////////////////////////////////////////////////////
for (size_t chan = 0; chan < _get_num_radios(); chan++) {
_setup_radio_channel(chan);
}
// Loopback test
for (size_t chan = 0; chan < _get_num_radios(); chan++) {
_codec_mgr->loopback_self_test(
[this, chan](const uint32_t value){
this->sr_write(regs::CODEC_IDLE, value, chan);
},
[this, chan](){
return this->user_reg_read64(regs::RB_CODEC_READBACK, chan);
}
);
}
this->_update_enables();
}
void e3xx_radio_ctrl_impl::_setup_radio_channel(const size_t chan)
{
const fs_path rx_dsp_path = fs_path("rx_dsps") / chan;
_tree->create(rx_dsp_path / "stream_cmd")
.add_coerced_subscriber(boost::bind(&radio_ctrl_impl::issue_stream_cmd, this, _1, chan));
////////////////////////////////////////////////////////////////////
// add some dummy nodes on the prop tree (FIXME remove these)
////////////////////////////////////////////////////////////////////
const fs_path tx_dsp_path = fs_path("tx_dsps") / chan;
_tree->create(tx_dsp_path / "freq/value").set(0.0);
_tree->create(tx_dsp_path / "freq/range").set(meta_range_t(0.0, 0.0, 0.0));
_tree->create(rx_dsp_path / "freq/value").set(0.0);
_tree->create(rx_dsp_path / "freq/range").set(meta_range_t(0.0, 0.0, 0.0));
_tree->create(tx_dsp_path / "rate/value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1))
.set_publisher(boost::bind(&radio_ctrl_impl::get_rate, this))
;
_tree->create(rx_dsp_path / "rate/value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1))
.set_publisher(boost::bind(&radio_ctrl_impl::get_rate, this))
;
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
static const std::vector dirs = boost::assign::list_of(RX_DIRECTION)(TX_DIRECTION);
BOOST_FOREACH(direction_t dir, dirs) {
const std::string x = (dir == RX_DIRECTION) ? "rx" : "tx";
const std::string key = boost::to_upper_copy(x) + std::string(((chan == FE0)? "1" : "2"));
const fs_path rf_fe_path
= fs_path("dboards") / "A" / (x + "_frontends") / ((chan == 0) ? "A" : "B");
// This will connect all the AD936x-specific items
_codec_mgr->populate_frontend_subtree(
_tree->subtree(rf_fe_path), key, dir
);
// This will connect all the e3xx_radio_ctrl-specific items
_tree->create(rf_fe_path / "sensors" / "lo_locked")
.set_publisher(boost::bind(&e3xx_radio_ctrl_impl::_get_fe_pll_lock, this, dir == TX_DIRECTION))
;
const double freq = _tree->access(rf_fe_path / "freq" / "value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::_update_fe_lo_freq, this, key, _1)).get()
;
// Set frequency in parent (to be used to update ATR values later)
if (dir == RX_DIRECTION) {
radio_ctrl_impl::set_rx_frequency(freq, chan);
} else {
radio_ctrl_impl::set_tx_frequency(freq, chan);
}
// Antenna Setup
if (dir == RX_DIRECTION) {
static const std::vector ants = boost::assign::list_of("TX/RX")("RX2");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rx_antenna, this, _1, chan))
.set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_rx_antenna, this, chan));
// Set default in parent (to be used to update ATR values later)
radio_ctrl_impl::set_rx_antenna("RX2", chan);
// Set up LEDs for default antenna
_update_atr_leds(_e3xx_perifs[chan].leds, "RX2");
}
else if (dir == TX_DIRECTION) {
static const std::vector ants(1, "TX/RX");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value")
.add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_tx_antenna, this, _1, chan))
.set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_tx_antenna, this, chan))
.set("TX/RX");
}
}
}
void e3xx_radio_ctrl_impl::_reset_radio(void)
{
std::lock_guard lock(_mutex);
_misc.radio_rst = 1;
_update_gpio_state();
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
_misc.radio_rst = 0;
_update_gpio_state();
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
/****************************************************************************
* Helpers
***************************************************************************/
bool e3xx_radio_ctrl_impl::check_radio_config()
{
const size_t num_rx = _is_streamer_active(RX_DIRECTION, FE0) + _is_streamer_active(RX_DIRECTION, FE1);
const size_t num_tx = _is_streamer_active(TX_DIRECTION, FE0) + _is_streamer_active(TX_DIRECTION, FE1);
_enforce_tick_rate_limits(
std::max(num_rx, num_tx),
get_tick_rate()
);
this->_update_enables();
return true;
}
void e3xx_radio_ctrl_impl::_enforce_tick_rate_limits(
const size_t chan_count,
const double tick_rate
) {
const size_t max_chans = 2;
if (chan_count > max_chans) {
throw uhd::value_error(boost::str(
boost::format("cannot not setup %d channels per direction (maximum is %d)")
% chan_count
% max_chans
));
} else {
const double max_tick_rate = uhd::usrp::ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
if (tick_rate - max_tick_rate >= 1.0)
{
throw uhd::value_error(boost::str(
boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d channels")
% (tick_rate/1e6)
% (max_tick_rate/1e6)
% chan_count
));
}
// TODO minimum rate check
}
}
/****************************************************************************
* Peripheral controls
***************************************************************************/
void e3xx_radio_ctrl_impl::_update_fe_lo_freq(const std::string &fe, const double freq)
{
if (fe[0] == 'R') {
for (size_t i = 0; i < _get_num_radios(); i++) {
radio_ctrl_impl::set_rx_frequency(freq, i);
}
}
if (fe[0] == 'T') {
for (size_t i = 0; i < _get_num_radios(); i++) {
radio_ctrl_impl::set_tx_frequency(freq, i);
}
}
this->_update_atrs();
}
void e3xx_radio_ctrl_impl::_update_atrs(void)
{
for (size_t instance = 0; instance < _get_num_radios(); instance++)
{
// if we're not ready, no point ...
if (not _e3xx_perifs[instance].atr)
return;
const bool rx_ant_rx2 = get_rx_antenna(instance) == "RX2";
const double rx_freq = get_rx_frequency(instance);
const double tx_freq = get_tx_frequency(instance);
const bool rx_low_band = rx_freq < 2.6e9;
const bool tx_low_band = tx_freq < 2940.0e6;
// VCRX
uint32_t vcrx_v1_rxing = 1;
uint32_t vcrx_v2_rxing = 0;
uint32_t vcrx_v1_txing = 1;
uint32_t vcrx_v2_txing = 0;
if (rx_low_band) {
vcrx_v1_rxing = rx_ant_rx2 ? 0 : 1;
vcrx_v2_rxing = rx_ant_rx2 ? 1 : 0;
vcrx_v1_txing = 0;
vcrx_v2_txing = 1;
} else {
vcrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vcrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vcrx_v1_txing = 1;
vcrx_v2_txing = 0;
}
// VCTX
uint32_t vctxrx_v1_rxing = 0;
uint32_t vctxrx_v2_rxing = 1;
uint32_t vctxrx_v1_txing = 0;
uint32_t vctxrx_v2_txing = 1;
if (tx_low_band) {
vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vctxrx_v1_txing = 1;
vctxrx_v2_txing = 0;
} else {
vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vctxrx_v1_txing = 1;
vctxrx_v2_txing = 1;
}
//swapped for routing reasons, reswap it here
if (instance == 1) {
std::swap(vctxrx_v1_rxing, vctxrx_v2_rxing);
std::swap(vctxrx_v1_txing, vctxrx_v2_txing);
}
uint32_t tx_enable_a = (!tx_low_band) ? 1 : 0;
uint32_t tx_enable_b = (tx_low_band) ? 1 : 0;
/* Set RX / TX band selects */
uint32_t rx_band_select_a = 0;
uint32_t rx_band_select_b = 0;
uint32_t rx_band_select_c = 0;
uint32_t tx_band_select = 0;
if (instance == 0) {
// RX
if (rx_freq < 450e6) {
rx_band_select_a = 5; // 3'b101
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 1; // 2'b01
} else if (rx_freq < 700e6) {
rx_band_select_a = 3; // 3'b011
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 3; // 2'b11
} else if (rx_freq < 1200e6) {
rx_band_select_a = 1; // 3'b001
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 2; // 2'b10
} else if (rx_freq < 1800e6) {
rx_band_select_a = 0; // 3'b000
rx_band_select_b = 1; // 2'b01
rx_band_select_c = 0; // 2'bXX -- Don't care
} else if (rx_freq < 2350e6){
rx_band_select_a = 2; // 3'b010
rx_band_select_b = 3; // 2'b11
rx_band_select_c = 0; // 2'bXX -- Don't care
} else if (rx_freq < 2600e6){
rx_band_select_a = 4; // 3'b100
rx_band_select_b = 2; // 2'b10
rx_band_select_c = 0; // 2'bXX -- Don't care
} else { // >= 2600e6
rx_band_select_a = 5; // 3'bXX -- Don't care
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 1; // 2'bXX -- Don't care
}
} else if (instance == 1) {
if (rx_freq < 450e6) {
rx_band_select_a = 4; // 3'b100
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 2; // 2'b10
} else if (rx_freq < 700e6) {
rx_band_select_a = 2; // 3'b010
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 3; // 2'b11
} else if (rx_freq < 1200e6) {
rx_band_select_a = 0; // 3'b000
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 1; // 2'b01
} else if (rx_freq < 1800e6) {
rx_band_select_a = 1; // 3'b001
rx_band_select_b = 2; // 2'b10
rx_band_select_c = 0; // 2'bXX -- Don't care
} else if (rx_freq < 2350e6){
rx_band_select_a = 3; // 3'b011
rx_band_select_b = 3; // 2'b11
rx_band_select_c = 0; // 2'bXX -- Don't care
} else if (rx_freq < 2600e6){
rx_band_select_a = 5; // 3'b101
rx_band_select_b = 1; // 2'b01
rx_band_select_c = 0; // 2'bXX -- Don't care
} else { // >= 2600e6
rx_band_select_a = 5; // 3'bXX -- Don't care
rx_band_select_b = 0; // 2'bXX -- Don't care
rx_band_select_c = 1; // 2'bXX -- Don't care
}
} else {
UHD_THROW_INVALID_CODE_PATH();
}
// TX band selects are the same for both radio frontends
if (tx_freq < 117.7e6)
tx_band_select = 7; // 3'b111
else if (tx_freq < 178.2e6)
tx_band_select = 6; // 3'b110
else if (tx_freq < 284.3e6)
tx_band_select = 5; // 3'b101
else if (tx_freq < 453.7e6)
tx_band_select = 4; // 3'b100
else if (tx_freq < 723.8e6)
tx_band_select = 3; // 3'b011
else if (tx_freq < 1154.9e6)
tx_band_select = 2; // 3'b010
else if (tx_freq < 1842.6e6)
tx_band_select = 1; // 3'b001
else if (tx_freq < 2940.0e6)
tx_band_select = 0; // 3'b000
else // > 2940.0e6
tx_band_select = 7; // 3'bXXX -- Don't care, set to lowest band
const uint32_t rx_selects = 0
| (vcrx_v1_rxing << VCRX_V1)
| (vcrx_v2_rxing << VCRX_V2)
| (vctxrx_v1_rxing << VCTXRX_V1)
| (vctxrx_v2_rxing << VCTXRX_V2)
;
const uint32_t tx_selects = 0
| (vcrx_v1_txing << VCRX_V1)
| (vcrx_v2_txing << VCRX_V2)
| (vctxrx_v1_txing << VCTXRX_V1)
| (vctxrx_v2_txing << VCTXRX_V2)
;
const uint32_t tx_enables = 0
| (tx_enable_a << TX_ENABLEA)
| (tx_enable_b << TX_ENABLEB)
;
const uint32_t rxtx_band_selects = 0
| (rx_band_select_a << RX_BANDSEL)
| (rx_band_select_b << RXB_BANDSEL)
| (rx_band_select_c << RXC_BANDSEL)
| (tx_band_select << TX_BANDSEL)
;
// Form register values;
uint32_t oo_reg = rx_selects | rxtx_band_selects;
uint32_t rx_reg = rx_selects | rxtx_band_selects;
uint32_t tx_reg = tx_selects | tx_enables | rxtx_band_selects;
uint32_t fd_reg = tx_selects | tx_enables | rxtx_band_selects; //tx selects dominate in fd mode
//add tx enables based on fe enable
tx_reg |= tx_enables;
fd_reg |= tx_enables;
usrp::gpio_atr::gpio_atr_3000::sptr atr = _e3xx_perifs[instance].atr;
atr->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, oo_reg);
atr->set_atr_reg(usrp::gpio_atr::ATR_REG_RX_ONLY, rx_reg);
atr->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_reg);
atr->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, fd_reg);
}
}
void e3xx_radio_ctrl_impl::_update_atr_leds(usrp::gpio_atr::gpio_atr_3000::sptr leds, const std::string &rx_ant)
{
const bool is_txrx = (rx_ant == "TX/RX");
const int rx_led = (1 << 2);
const int tx_led = (1 << 1);
const int txrx_led = (1 << 0);
using namespace uhd::usrp::gpio_atr;
leds->set_atr_reg(ATR_REG_IDLE, 0);
leds->set_atr_reg(ATR_REG_RX_ONLY, is_txrx ? txrx_led : rx_led);
leds->set_atr_reg(ATR_REG_TX_ONLY, tx_led);
leds->set_atr_reg(ATR_REG_FULL_DUPLEX, rx_led | tx_led);
}
void e3xx_radio_ctrl_impl::_update_gpio_state(void)
{
UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::_update_gpio_state() " << std::endl;
uint32_t misc_reg = 0
| (_misc.pps_sel << gpio_t::PPS_SEL)
| (_misc.mimo << gpio_t::MIMO)
| (_misc.radio_rst << gpio_t::RADIO_RST);
_tree->access("global_regs/misc").set(misc_reg);
}
void e3xx_radio_ctrl_impl::_update_enables(void)
{
std::lock_guard lock(_mutex);
UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::_update_enables() " << std::endl;
if (not _codec_ctrl) {
UHD_LOGGER_WARNING("E300") << "Attempting to access CODEC controls before setting up the radios." << std::endl;
return;
}
const size_t num_rx = _is_streamer_active(RX_DIRECTION, FE0) + _is_streamer_active(RX_DIRECTION, FE1);
const size_t num_tx = _is_streamer_active(TX_DIRECTION, FE0) + _is_streamer_active(TX_DIRECTION, FE1);
const bool mimo = (num_rx == 2) or (num_tx == 2);
// This currently doesn't work with GNU Radio, so leave it uncommented
//if ((num_tx + num_rx) == 3)
// throw uhd::runtime_error("e300: 2 RX 1 TX and 1 RX 2 TX configurations not possible");
//setup the active chains in the codec
if ((num_rx + num_tx) == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
_codec_ctrl->set_active_chains(false, false, true, false);
} else {
_codec_ctrl->set_active_chains(
_is_streamer_active(TX_DIRECTION, FE0),
_is_streamer_active(TX_DIRECTION, FE1),
_is_streamer_active(RX_DIRECTION, FE0),
_is_streamer_active(RX_DIRECTION, FE1)
);
}
// Set radio data direction register cleared due to reset
for (size_t instance = 0; instance < _get_num_radios(); instance++)
{
_e3xx_perifs[instance].atr->set_gpio_ddr(usrp::gpio_atr::DDR_OUTPUT, 0xFFFFFFFF);
}
//figure out if mimo is enabled based on new state
_misc.mimo = (mimo) ? 1 : 0;
_update_gpio_state();
//atrs change based on enables
_update_atrs();
}
void e3xx_radio_ctrl_impl::_update_time_source(const std::string &source)
{
std::lock_guard lock(_mutex);
UHD_LOGGER_DEBUG("E300") << boost::format("Setting time source to %s") % source << std::endl;
if (source == "none" or source == "internal") {
_misc.pps_sel = global_regs::PPS_INT;
#ifdef E300_GPSD
} else if (source == "gpsdo") {
_misc.pps_sel = global_regs::PPS_GPS;
#endif
} else if (source == "external") {
_misc.pps_sel = global_regs::PPS_EXT;
} else {
throw uhd::key_error("update_time_source: unknown source: " + source);
}
_update_gpio_state();
}
uhd::sensor_value_t e3xx_radio_ctrl_impl::_get_fe_pll_lock(const bool is_tx)
{
const uint32_t st = _tree->access("global_regs/pll").get();
const bool locked = is_tx ? ((st & 0x1) > 0) : ((st & 0x2) > 0);
return sensor_value_t("LO", locked, "locked", "unlocked");
}
/****************************************************************************
* Register block
***************************************************************************/
UHD_RFNOC_BLOCK_REGISTER(e3xx_radio_ctrl, "E3XXRadio");