// // Copyright 2015-2016 Ettus Research // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "e3xx_radio_ctrl_impl.hpp" #include "e300_defaults.hpp" #include "e300_regs.hpp" #include #include #include #include #include #include using namespace uhd; using namespace uhd::rfnoc; using namespace uhd::usrp::e300; using uhd::usrp::dboard_iface; //! mapping of frontend to radio perif index static const size_t FE0 = 1; static const size_t FE1 = 0; /**************************************************************************** * Structors ***************************************************************************/ UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(e3xx_radio_ctrl) { UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::ctor() " << std::endl; //////////////////////////////////////////////////////////////////// // Set up peripherals //////////////////////////////////////////////////////////////////// for (size_t i = 0; i < _get_num_radios(); i++) { if (i == 0) { _spi = spi_core_3000::make(_get_ctrl(i), regs::sr_addr(regs::SPI), regs::RB_SPI); _spi->set_divider(6); } _e3xx_perifs[i].atr = usrp::gpio_atr::gpio_atr_3000::make_write_only(_get_ctrl(i), regs::sr_addr(regs::GPIO)); _e3xx_perifs[i].leds = usrp::gpio_atr::gpio_atr_3000::make_write_only(_get_ctrl(i), regs::sr_addr(regs::LEDS)); _e3xx_perifs[i].leds->set_atr_mode(usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL); } //////////////////////////////////////////////////////////////////// // Time source //////////////////////////////////////////////////////////////////// _tree->create("time_source/value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::_update_time_source, this, _1)) .set(DEFAULT_TIME_SRC); #ifdef E300_GPSD static const std::vector time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo"); #else static const std::vector time_sources = boost::assign::list_of("none")("internal")("external"); #endif _tree->create >("time_source/options").set(time_sources); //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// { const fs_path codec_path = fs_path("rx_codecs") / "A"; _tree->create(codec_path / "name").set("E3x0 RX dual ADC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } { const fs_path codec_path = fs_path("tx_codecs") / "A"; _tree->create(codec_path / "name").set("E3x0 TX dual DAC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } //////////////////////////////////////////////////////////////////// // internal gpios //////////////////////////////////////////////////////////////////// UHD_RFNOC_BLOCK_TRACE() << " Creating internal GPIOs..." << std::endl; usrp::gpio_atr::gpio_atr_3000::sptr fp_gpio = usrp::gpio_atr::gpio_atr_3000::make( get_ctrl_iface(0), regs::sr_addr(regs::FP_GPIO), regs::RB_FP_GPIO ); for (const auto& attr : usrp::gpio_atr::gpio_attr_map) { switch (attr.first) { case usrp::gpio_atr::GPIO_SRC: _tree->create>(fs_path("gpio") / "INT0" / attr.second) .set(std::vector(32, usrp::gpio_atr::default_attr_value_map.at(attr.first))) .add_coerced_subscriber([this](const std::vector&){ throw uhd::runtime_error("This device does not support setting the GPIO_SRC attribute."); }); break; case usrp::gpio_atr::GPIO_CTRL: case usrp::gpio_atr::GPIO_DDR: _tree->create>(fs_path("gpio") / "INT0" / attr.second) .set(std::vector(32, usrp::gpio_atr::default_attr_value_map.at(attr.first))) .add_coerced_subscriber([this, fp_gpio, attr](const std::vector str_val){ uint32_t val = 0; for(size_t i = 0 ; i < str_val.size() ; i++){ val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second).at(str_val[i])<set_gpio_attr(attr.first, val); }); break; case usrp::gpio_atr::GPIO_READBACK: _tree->create(fs_path("gpio") / "INT0" / "READBACK") .set_publisher([this, fp_gpio](){ return fp_gpio->read_gpio(); }); break; default: _tree->create(fs_path("gpio") / "INT0" / attr.second) .set(0) .add_coerced_subscriber([this, fp_gpio, attr](const uint32_t val){ fp_gpio->set_gpio_attr(attr.first, val); }); } } //////////////////////////////////////////////////////////////////// // Tick rate //////////////////////////////////////////////////////////////////// UHD_RFNOC_BLOCK_TRACE() << " Setting tick rate..." << std::endl; _tree->access("tick_rate") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1)) .set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_rate, this)) ; } e3xx_radio_ctrl_impl::~e3xx_radio_ctrl_impl() { const std::string _radio_slot = "A"; // Tear down our part of the tree: _tree->remove(fs_path("rx_codecs" / _radio_slot)); _tree->remove(fs_path("tx_codecs" / _radio_slot)); for (size_t i = 0; i < _get_num_radios(); i++) { if (_tree->exists(fs_path("tx_dsps") / i)) { _tree->remove(fs_path("tx_dsps") / i); } if (_tree->exists(fs_path("rx_dsps") / i)) { _tree->remove(fs_path("rx_dsps") / i); } } for (const auto attr : usrp::gpio_atr::gpio_attr_map) { const auto gpio_fs_path = fs_path("gpio") / "INT0" / attr.second; if (_tree->exists(gpio_fs_path)) { _tree->remove(gpio_fs_path); } } } /**************************************************************************** * API calls ***************************************************************************/ double e3xx_radio_ctrl_impl::set_rate(double rate) { //UHD_LOGGER_DEBUG("E300") << "Setting SPI divider to " << ceil(rate/AD9361_SPI_RATE) << "\n"; //_spi->set_divider(ceil(rate/AD9361_SPI_RATE)); // ceil() to prevent less than 1 rounding to 0 UHD_LOGGER_DEBUG("E300") << "Asking for clock rate " << rate/1e6 << " MHz\n"; double actual_tick_rate = _codec_ctrl->set_clock_rate(rate); UHD_LOGGER_DEBUG("E300") << "Actually got clock rate " << actual_tick_rate/1e6 << " MHz\n"; actual_tick_rate = radio_ctrl_impl::set_rate(actual_tick_rate); if (not check_radio_config()) { throw std::runtime_error(str( boost::format("[%s]: Invalid radio configuration.") % unique_id() )); } return actual_tick_rate; } /*! Select TX antenna \p for channel \p chan. */ void e3xx_radio_ctrl_impl::set_tx_antenna(const std::string &ant, const size_t chan) { std::lock_guard lock(_mutex); if (ant != "TX/RX") throw uhd::value_error("Unknown TX antenna option: " + ant); radio_ctrl_impl::set_tx_antenna(ant, chan); } /*! Select RX antenna \p for channel \p chan. */ void e3xx_radio_ctrl_impl::set_rx_antenna(const std::string &ant, const size_t chan) { std::lock_guard lock(_mutex); if (ant != "TX/RX" and ant != "RX2") throw uhd::value_error("Unknown RX antenna option: " + ant); radio_ctrl_impl::set_rx_antenna(ant, chan); this->_update_atrs(); this->_update_atr_leds(_e3xx_perifs[chan].leds, ant); } double e3xx_radio_ctrl_impl::set_tx_frequency(const double freq, const size_t) { return _tree->access(fs_path("dboards/A/tx_frontends/A/freq/value")).set(freq).get(); } double e3xx_radio_ctrl_impl::set_rx_frequency(const double freq, const size_t) { return _tree->access(fs_path("dboards/A/rx_frontends/A/freq/value")).set(freq).get(); } double e3xx_radio_ctrl_impl::set_tx_gain(const double gain, const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; double new_gain = _tree->access(fs_path("dboards/A/tx_frontends/" + fe_side + "/gains/PGA/value")).set(gain).get(); return radio_ctrl_impl::set_tx_gain(new_gain, chan); } double e3xx_radio_ctrl_impl::set_rx_gain(const double gain, const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; double new_gain = _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/gains/PGA/value")).set(gain).get(); return radio_ctrl_impl::set_rx_gain(new_gain, chan); } double e3xx_radio_ctrl_impl::set_rx_bandwidth(const double bandwidth, const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; double new_bw = _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/bandwidth/value")).set(bandwidth).get(); return radio_ctrl_impl::set_rx_bandwidth(new_bw, chan); } double e3xx_radio_ctrl_impl::get_tx_gain(const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; return _tree->access(fs_path("dboards/A/tx_frontends/" + fe_side + "/gains/PGA/value")).get(); } double e3xx_radio_ctrl_impl::get_rx_gain(const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; return _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/gains/PGA/value")).get(); } double e3xx_radio_ctrl_impl::get_rx_bandwidth(const size_t chan) { const std::string fe_side = (chan == 0) ? "A" : "B"; return _tree->access(fs_path("dboards/A/rx_frontends/" + fe_side + "/bandwidth/value")).get(); } std::vector e3xx_radio_ctrl_impl::get_gpio_banks() const { std::vector banks = boost::assign::list_of("INT0"); return banks; } void e3xx_radio_ctrl_impl::set_gpio_attr( const std::string &bank, const std::string &attr, const uint32_t value, const uint32_t mask ) { if (bank == "INT0") { const uint32_t current = _tree->access(fs_path("gpio") / bank / attr).get(); const uint32_t new_value = (current & ~mask) | (value & mask); _tree->access(fs_path("gpio") / bank / attr).set(new_value); return; } } uint32_t e3xx_radio_ctrl_impl::get_gpio_attr( const std::string &bank, const std::string &attr ) { if (bank == "INT0") { return uint32_t(_tree->access(fs_path("gpio") / bank / attr).get()); } return 0; } size_t e3xx_radio_ctrl_impl::get_chan_from_dboard_fe(const std::string &fe, const direction_t) { return (fe == "A") ? 0 : 1; } std::string e3xx_radio_ctrl_impl::get_dboard_fe_from_chan(const size_t chan, const direction_t) { return (chan == 0) ? "A" : "B"; } /**************************************************************************** * Radio control and setup ***************************************************************************/ void e3xx_radio_ctrl_impl::setup_radio(uhd::usrp::ad9361_ctrl::sptr safe_codec_ctrl) { { std::lock_guard lock(_mutex); if (_codec_ctrl) { throw std::runtime_error("Attempting to set up radio twice!"); } } //////////////////////////////////////////////////////////////////// // Create timed interface //////////////////////////////////////////////////////////////////// _codec_ctrl = safe_codec_ctrl; _codec_mgr = uhd::usrp::ad936x_manager::make(_codec_ctrl, _get_num_radios()); //////////////////////////////////////////////////////////////////// // setup radios //////////////////////////////////////////////////////////////////// for (size_t chan = 0; chan < _get_num_radios(); chan++) { _setup_radio_channel(chan); } // Loopback test for (size_t chan = 0; chan < _get_num_radios(); chan++) { _codec_mgr->loopback_self_test( [this, chan](const uint32_t value){ this->sr_write(regs::CODEC_IDLE, value, chan); }, [this, chan](){ return this->user_reg_read64(regs::RB_CODEC_READBACK, chan); } ); } this->_update_enables(); } void e3xx_radio_ctrl_impl::_setup_radio_channel(const size_t chan) { const fs_path rx_dsp_path = fs_path("rx_dsps") / chan; _tree->create(rx_dsp_path / "stream_cmd") .add_coerced_subscriber(boost::bind(&radio_ctrl_impl::issue_stream_cmd, this, _1, chan)); //////////////////////////////////////////////////////////////////// // add some dummy nodes on the prop tree (FIXME remove these) //////////////////////////////////////////////////////////////////// const fs_path tx_dsp_path = fs_path("tx_dsps") / chan; _tree->create(tx_dsp_path / "freq/value").set(0.0); _tree->create(tx_dsp_path / "freq/range").set(meta_range_t(0.0, 0.0, 0.0)); _tree->create(rx_dsp_path / "freq/value").set(0.0); _tree->create(rx_dsp_path / "freq/range").set(meta_range_t(0.0, 0.0, 0.0)); _tree->create(tx_dsp_path / "rate/value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1)) .set_publisher(boost::bind(&radio_ctrl_impl::get_rate, this)) ; _tree->create(rx_dsp_path / "rate/value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rate, this, _1)) .set_publisher(boost::bind(&radio_ctrl_impl::get_rate, this)) ; //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// static const std::vector dirs = boost::assign::list_of(RX_DIRECTION)(TX_DIRECTION); BOOST_FOREACH(direction_t dir, dirs) { const std::string x = (dir == RX_DIRECTION) ? "rx" : "tx"; const std::string key = boost::to_upper_copy(x) + std::string(((chan == FE0)? "1" : "2")); const fs_path rf_fe_path = fs_path("dboards") / "A" / (x + "_frontends") / ((chan == 0) ? "A" : "B"); // This will connect all the AD936x-specific items _codec_mgr->populate_frontend_subtree( _tree->subtree(rf_fe_path), key, dir ); // This will connect all the e3xx_radio_ctrl-specific items _tree->create(rf_fe_path / "sensors" / "lo_locked") .set_publisher(boost::bind(&e3xx_radio_ctrl_impl::_get_fe_pll_lock, this, dir == TX_DIRECTION)) ; const double freq = _tree->access(rf_fe_path / "freq" / "value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::_update_fe_lo_freq, this, key, _1)).get() ; // Set frequency in parent (to be used to update ATR values later) if (dir == RX_DIRECTION) { radio_ctrl_impl::set_rx_frequency(freq, chan); } else { radio_ctrl_impl::set_tx_frequency(freq, chan); } // Antenna Setup if (dir == RX_DIRECTION) { static const std::vector ants = boost::assign::list_of("TX/RX")("RX2"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_rx_antenna, this, _1, chan)) .set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_rx_antenna, this, chan)); // Set default in parent (to be used to update ATR values later) radio_ctrl_impl::set_rx_antenna("RX2", chan); // Set up LEDs for default antenna _update_atr_leds(_e3xx_perifs[chan].leds, "RX2"); } else if (dir == TX_DIRECTION) { static const std::vector ants(1, "TX/RX"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value") .add_coerced_subscriber(boost::bind(&e3xx_radio_ctrl_impl::set_tx_antenna, this, _1, chan)) .set_publisher(boost::bind(&e3xx_radio_ctrl_impl::get_tx_antenna, this, chan)) .set("TX/RX"); } } } void e3xx_radio_ctrl_impl::_reset_radio(void) { std::lock_guard lock(_mutex); _misc.radio_rst = 1; _update_gpio_state(); boost::this_thread::sleep(boost::posix_time::milliseconds(10)); _misc.radio_rst = 0; _update_gpio_state(); boost::this_thread::sleep(boost::posix_time::milliseconds(10)); } /**************************************************************************** * Helpers ***************************************************************************/ bool e3xx_radio_ctrl_impl::check_radio_config() { const size_t num_rx = _is_streamer_active(RX_DIRECTION, FE0) + _is_streamer_active(RX_DIRECTION, FE1); const size_t num_tx = _is_streamer_active(TX_DIRECTION, FE0) + _is_streamer_active(TX_DIRECTION, FE1); _enforce_tick_rate_limits( std::max(num_rx, num_tx), get_tick_rate() ); this->_update_enables(); return true; } void e3xx_radio_ctrl_impl::_enforce_tick_rate_limits( const size_t chan_count, const double tick_rate ) { const size_t max_chans = 2; if (chan_count > max_chans) { throw uhd::value_error(boost::str( boost::format("cannot not setup %d channels per direction (maximum is %d)") % chan_count % max_chans )); } else { const double max_tick_rate = uhd::usrp::ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2); if (tick_rate - max_tick_rate >= 1.0) { throw uhd::value_error(boost::str( boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d channels") % (tick_rate/1e6) % (max_tick_rate/1e6) % chan_count )); } // TODO minimum rate check } } /**************************************************************************** * Peripheral controls ***************************************************************************/ void e3xx_radio_ctrl_impl::_update_fe_lo_freq(const std::string &fe, const double freq) { if (fe[0] == 'R') { for (size_t i = 0; i < _get_num_radios(); i++) { radio_ctrl_impl::set_rx_frequency(freq, i); } } if (fe[0] == 'T') { for (size_t i = 0; i < _get_num_radios(); i++) { radio_ctrl_impl::set_tx_frequency(freq, i); } } this->_update_atrs(); } void e3xx_radio_ctrl_impl::_update_atrs(void) { for (size_t instance = 0; instance < _get_num_radios(); instance++) { // if we're not ready, no point ... if (not _e3xx_perifs[instance].atr) return; const bool rx_ant_rx2 = get_rx_antenna(instance) == "RX2"; const double rx_freq = get_rx_frequency(instance); const double tx_freq = get_tx_frequency(instance); const bool rx_low_band = rx_freq < 2.6e9; const bool tx_low_band = tx_freq < 2940.0e6; // VCRX uint32_t vcrx_v1_rxing = 1; uint32_t vcrx_v2_rxing = 0; uint32_t vcrx_v1_txing = 1; uint32_t vcrx_v2_txing = 0; if (rx_low_band) { vcrx_v1_rxing = rx_ant_rx2 ? 0 : 1; vcrx_v2_rxing = rx_ant_rx2 ? 1 : 0; vcrx_v1_txing = 0; vcrx_v2_txing = 1; } else { vcrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vcrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vcrx_v1_txing = 1; vcrx_v2_txing = 0; } // VCTX uint32_t vctxrx_v1_rxing = 0; uint32_t vctxrx_v2_rxing = 1; uint32_t vctxrx_v1_txing = 0; uint32_t vctxrx_v2_txing = 1; if (tx_low_band) { vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vctxrx_v1_txing = 1; vctxrx_v2_txing = 0; } else { vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vctxrx_v1_txing = 1; vctxrx_v2_txing = 1; } //swapped for routing reasons, reswap it here if (instance == 1) { std::swap(vctxrx_v1_rxing, vctxrx_v2_rxing); std::swap(vctxrx_v1_txing, vctxrx_v2_txing); } uint32_t tx_enable_a = (!tx_low_band) ? 1 : 0; uint32_t tx_enable_b = (tx_low_band) ? 1 : 0; /* Set RX / TX band selects */ uint32_t rx_band_select_a = 0; uint32_t rx_band_select_b = 0; uint32_t rx_band_select_c = 0; uint32_t tx_band_select = 0; if (instance == 0) { // RX if (rx_freq < 450e6) { rx_band_select_a = 5; // 3'b101 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 1; // 2'b01 } else if (rx_freq < 700e6) { rx_band_select_a = 3; // 3'b011 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 3; // 2'b11 } else if (rx_freq < 1200e6) { rx_band_select_a = 1; // 3'b001 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 2; // 2'b10 } else if (rx_freq < 1800e6) { rx_band_select_a = 0; // 3'b000 rx_band_select_b = 1; // 2'b01 rx_band_select_c = 0; // 2'bXX -- Don't care } else if (rx_freq < 2350e6){ rx_band_select_a = 2; // 3'b010 rx_band_select_b = 3; // 2'b11 rx_band_select_c = 0; // 2'bXX -- Don't care } else if (rx_freq < 2600e6){ rx_band_select_a = 4; // 3'b100 rx_band_select_b = 2; // 2'b10 rx_band_select_c = 0; // 2'bXX -- Don't care } else { // >= 2600e6 rx_band_select_a = 5; // 3'bXX -- Don't care rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 1; // 2'bXX -- Don't care } } else if (instance == 1) { if (rx_freq < 450e6) { rx_band_select_a = 4; // 3'b100 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 2; // 2'b10 } else if (rx_freq < 700e6) { rx_band_select_a = 2; // 3'b010 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 3; // 2'b11 } else if (rx_freq < 1200e6) { rx_band_select_a = 0; // 3'b000 rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 1; // 2'b01 } else if (rx_freq < 1800e6) { rx_band_select_a = 1; // 3'b001 rx_band_select_b = 2; // 2'b10 rx_band_select_c = 0; // 2'bXX -- Don't care } else if (rx_freq < 2350e6){ rx_band_select_a = 3; // 3'b011 rx_band_select_b = 3; // 2'b11 rx_band_select_c = 0; // 2'bXX -- Don't care } else if (rx_freq < 2600e6){ rx_band_select_a = 5; // 3'b101 rx_band_select_b = 1; // 2'b01 rx_band_select_c = 0; // 2'bXX -- Don't care } else { // >= 2600e6 rx_band_select_a = 5; // 3'bXX -- Don't care rx_band_select_b = 0; // 2'bXX -- Don't care rx_band_select_c = 1; // 2'bXX -- Don't care } } else { UHD_THROW_INVALID_CODE_PATH(); } // TX band selects are the same for both radio frontends if (tx_freq < 117.7e6) tx_band_select = 7; // 3'b111 else if (tx_freq < 178.2e6) tx_band_select = 6; // 3'b110 else if (tx_freq < 284.3e6) tx_band_select = 5; // 3'b101 else if (tx_freq < 453.7e6) tx_band_select = 4; // 3'b100 else if (tx_freq < 723.8e6) tx_band_select = 3; // 3'b011 else if (tx_freq < 1154.9e6) tx_band_select = 2; // 3'b010 else if (tx_freq < 1842.6e6) tx_band_select = 1; // 3'b001 else if (tx_freq < 2940.0e6) tx_band_select = 0; // 3'b000 else // > 2940.0e6 tx_band_select = 7; // 3'bXXX -- Don't care, set to lowest band const uint32_t rx_selects = 0 | (vcrx_v1_rxing << VCRX_V1) | (vcrx_v2_rxing << VCRX_V2) | (vctxrx_v1_rxing << VCTXRX_V1) | (vctxrx_v2_rxing << VCTXRX_V2) ; const uint32_t tx_selects = 0 | (vcrx_v1_txing << VCRX_V1) | (vcrx_v2_txing << VCRX_V2) | (vctxrx_v1_txing << VCTXRX_V1) | (vctxrx_v2_txing << VCTXRX_V2) ; const uint32_t tx_enables = 0 | (tx_enable_a << TX_ENABLEA) | (tx_enable_b << TX_ENABLEB) ; const uint32_t rxtx_band_selects = 0 | (rx_band_select_a << RX_BANDSEL) | (rx_band_select_b << RXB_BANDSEL) | (rx_band_select_c << RXC_BANDSEL) | (tx_band_select << TX_BANDSEL) ; // Form register values; uint32_t oo_reg = rx_selects | rxtx_band_selects; uint32_t rx_reg = rx_selects | rxtx_band_selects; uint32_t tx_reg = tx_selects | tx_enables | rxtx_band_selects; uint32_t fd_reg = tx_selects | tx_enables | rxtx_band_selects; //tx selects dominate in fd mode //add tx enables based on fe enable tx_reg |= tx_enables; fd_reg |= tx_enables; usrp::gpio_atr::gpio_atr_3000::sptr atr = _e3xx_perifs[instance].atr; atr->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, oo_reg); atr->set_atr_reg(usrp::gpio_atr::ATR_REG_RX_ONLY, rx_reg); atr->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_reg); atr->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, fd_reg); } } void e3xx_radio_ctrl_impl::_update_atr_leds(usrp::gpio_atr::gpio_atr_3000::sptr leds, const std::string &rx_ant) { const bool is_txrx = (rx_ant == "TX/RX"); const int rx_led = (1 << 2); const int tx_led = (1 << 1); const int txrx_led = (1 << 0); using namespace uhd::usrp::gpio_atr; leds->set_atr_reg(ATR_REG_IDLE, 0); leds->set_atr_reg(ATR_REG_RX_ONLY, is_txrx ? txrx_led : rx_led); leds->set_atr_reg(ATR_REG_TX_ONLY, tx_led); leds->set_atr_reg(ATR_REG_FULL_DUPLEX, rx_led | tx_led); } void e3xx_radio_ctrl_impl::_update_gpio_state(void) { UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::_update_gpio_state() " << std::endl; uint32_t misc_reg = 0 | (_misc.pps_sel << gpio_t::PPS_SEL) | (_misc.mimo << gpio_t::MIMO) | (_misc.radio_rst << gpio_t::RADIO_RST); _tree->access("global_regs/misc").set(misc_reg); } void e3xx_radio_ctrl_impl::_update_enables(void) { std::lock_guard lock(_mutex); UHD_RFNOC_BLOCK_TRACE() << "e3xx_radio_ctrl_impl::_update_enables() " << std::endl; if (not _codec_ctrl) { UHD_LOGGER_WARNING("E300") << "Attempting to access CODEC controls before setting up the radios." << std::endl; return; } const size_t num_rx = _is_streamer_active(RX_DIRECTION, FE0) + _is_streamer_active(RX_DIRECTION, FE1); const size_t num_tx = _is_streamer_active(TX_DIRECTION, FE0) + _is_streamer_active(TX_DIRECTION, FE1); const bool mimo = (num_rx == 2) or (num_tx == 2); // This currently doesn't work with GNU Radio, so leave it uncommented //if ((num_tx + num_rx) == 3) // throw uhd::runtime_error("e300: 2 RX 1 TX and 1 RX 2 TX configurations not possible"); //setup the active chains in the codec if ((num_rx + num_tx) == 0) { // Ensure at least one RX chain is enabled so AD9361 outputs a sample clock _codec_ctrl->set_active_chains(false, false, true, false); } else { _codec_ctrl->set_active_chains( _is_streamer_active(TX_DIRECTION, FE0), _is_streamer_active(TX_DIRECTION, FE1), _is_streamer_active(RX_DIRECTION, FE0), _is_streamer_active(RX_DIRECTION, FE1) ); } // Set radio data direction register cleared due to reset for (size_t instance = 0; instance < _get_num_radios(); instance++) { _e3xx_perifs[instance].atr->set_gpio_ddr(usrp::gpio_atr::DDR_OUTPUT, 0xFFFFFFFF); } //figure out if mimo is enabled based on new state _misc.mimo = (mimo) ? 1 : 0; _update_gpio_state(); //atrs change based on enables _update_atrs(); } void e3xx_radio_ctrl_impl::_update_time_source(const std::string &source) { std::lock_guard lock(_mutex); UHD_LOGGER_DEBUG("E300") << boost::format("Setting time source to %s") % source << std::endl; if (source == "none" or source == "internal") { _misc.pps_sel = global_regs::PPS_INT; #ifdef E300_GPSD } else if (source == "gpsdo") { _misc.pps_sel = global_regs::PPS_GPS; #endif } else if (source == "external") { _misc.pps_sel = global_regs::PPS_EXT; } else { throw uhd::key_error("update_time_source: unknown source: " + source); } _update_gpio_state(); } uhd::sensor_value_t e3xx_radio_ctrl_impl::_get_fe_pll_lock(const bool is_tx) { const uint32_t st = _tree->access("global_regs/pll").get(); const bool locked = is_tx ? ((st & 0x1) > 0) : ((st & 0x2) > 0); return sensor_value_t("LO", locked, "locked", "unlocked"); } /**************************************************************************** * Register block ***************************************************************************/ UHD_RFNOC_BLOCK_REGISTER(e3xx_radio_ctrl, "E3XXRadio");