// // Copyright 2013-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "e300_impl.hpp" #include "e300_defaults.hpp" #include "e300_fpga_defs.hpp" #include "e300_spi.hpp" #include "e300_regs.hpp" #include "e300_eeprom_manager.hpp" #include "e300_sensor_manager.hpp" #include "e300_common.hpp" #include "e300_remote_codec_ctrl.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //sleep #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; namespace fs = boost::filesystem; namespace asio = boost::asio; //! mapping of frontend to radio perif index static const size_t FE0 = 1; static const size_t FE1 = 0; namespace uhd { namespace usrp { namespace e300 { /*********************************************************************** * Discovery **********************************************************************/ static std::vector discover_ip_addrs( const std::string& addr_hint, const std::string& port) { std::vector addrs; // Create a UDP transport to communicate: // Some devices will cause a throw when opened for a broadcast address. // We print and recover so the caller can loop through all bcast addrs. uhd::transport::udp_simple::sptr udp_bcast_xport; try { udp_bcast_xport = uhd::transport::udp_simple::make_broadcast(addr_hint, port); } catch(const std::exception &e) { UHD_MSG(error) << boost::format("Cannot open UDP transport on %s for discovery\n%s") % addr_hint % e.what() << std::endl; return addrs; } catch(...) { UHD_MSG(error) << "E300 Network discovery unknown error" << std::endl; return addrs; } // TODO: Do not abuse the I2C transport here ... // we send a read request to i2c address 0x51, // to read register 0 i2c_transaction_t req; req.type = i2c::READ | i2c::ONEBYTE; req.addr = 0x51; // mboard's eeprom address, we don't really care req.reg = 4; // send dummy request try { udp_bcast_xport->send(boost::asio::buffer(&req, sizeof(req))); } catch (const std::exception &ex) { UHD_MSG(error) << "E300 Network discovery error " << ex.what() << std::endl; return addrs; } catch(...) { UHD_MSG(error) << "E300 Network discovery unknown error" << std::endl; return addrs; } // loop for replies until timeout while (true) { boost::uint8_t buff[sizeof(i2c_transaction_t)] = {}; const size_t nbytes = udp_bcast_xport->recv(boost::asio::buffer(buff), 0.050); if (nbytes == 0) break; //No more responses const i2c_transaction_t *reply = reinterpret_cast(buff); if (req.addr == reply->addr) addrs.push_back(udp_bcast_xport->get_recv_addr()); } return addrs; } static bool is_loopback(const if_addrs_t &if_addrs) { return if_addrs.inet == asio::ip::address_v4::loopback().to_string(); } static device_addrs_t e300_find(const device_addr_t &multi_dev_hint) { // handle multi device discovery device_addrs_t hints = separate_device_addr(multi_dev_hint); if (hints.size() > 1) { device_addrs_t found_devices; std::string err_msg; BOOST_FOREACH(const device_addr_t &hint_i, hints) { device_addrs_t found_devices_i = e300_find(hint_i); if(found_devices_i.size() != 1) err_msg += str(boost::format( "Could not resolve device hint \"%s\" to a single device.") % hint_i.to_string()); else found_devices.push_back(found_devices_i[0]); if (found_devices.empty()) return device_addrs_t(); if (not err_msg.empty()) throw uhd::value_error(err_msg); } return device_addrs_t(1, combine_device_addrs(found_devices)); } // initialize the hint for a single device case UHD_ASSERT_THROW(hints.size() <= 1); hints.resize(1); // in case it was empty device_addr_t hint = hints[0]; device_addrs_t e300_addrs; // return an empty list of addresses when type is set to non-e300 if (hint.has_key("type") and hint["type"] != "e3x0") return e300_addrs; const bool loopback_only = get_if_addrs().size() == 1 and is_loopback(get_if_addrs().at(0)); // if we don't have connectivity, we might as well skip the network part if (not loopback_only) { // if no address or node has been specified, send a broadcast if ((not hint.has_key("addr")) and (not hint.has_key("node"))) { BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs()) { // avoid the loopback device if (is_loopback(if_addrs)) continue; // create a new hint with this broadcast address device_addr_t new_hint = hint; new_hint["addr"] = if_addrs.bcast; // call discover with the new hint ad append results device_addrs_t new_e300_addrs = e300_find(new_hint); e300_addrs.insert(e300_addrs.begin(), new_e300_addrs.begin(), new_e300_addrs.end()); } return e300_addrs; } std::vector ip_addrs = discover_ip_addrs( hint["addr"], E300_SERVER_I2C_PORT); BOOST_FOREACH(const std::string &ip_addr, ip_addrs) { device_addr_t new_addr; new_addr["type"] = "e3x0"; new_addr["addr"] = ip_addr; // see if we can read the eeprom try { e300_eeprom_manager eeprom_manager( i2c::make_simple_udp(new_addr["addr"], E300_SERVER_I2C_PORT)); const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom(); new_addr["name"] = eeprom["name"]; new_addr["serial"] = eeprom["serial"]; new_addr["product"] = eeprom["product"]; } catch (...) { // set these values as empty string, so the device may still be found // and the filters below can still operate on the discovered device new_addr["name"] = ""; new_addr["serial"] = ""; } // filter the discovered device below by matching optional keys if ((not hint.has_key("name") or hint["name"] == new_addr["name"]) and (not hint.has_key("serial") or hint["serial"] == new_addr["serial"])) { e300_addrs.push_back(new_addr); } } } // finally search locally // if device node is not provided, // use the default one if (not hint.has_key("node")) { device_addr_t new_addr = hint; new_addr["node"] = "/dev/axi_fpga"; return e300_find(new_addr); } // use the given node if (fs::exists(hint["node"])) { device_addr_t new_addr; new_addr["type"] = "e3x0"; new_addr["node"] = fs::system_complete(fs::path(hint["node"])).string(); try { e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE)); const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom(); new_addr["name"] = eeprom["name"]; new_addr["serial"] = eeprom["serial"]; new_addr["product"] = eeprom["product"]; } catch (...) { // set these values as empty string, so the device may still be found // and the filters below can still operate on the discovered device new_addr["name"] = ""; new_addr["serial"] = ""; } // filter the discovered device below by matching optional keys if ((not hint.has_key("name") or hint["name"] == new_addr["name"]) and (not hint.has_key("serial") or hint["serial"] == new_addr["serial"])) { e300_addrs.push_back(new_addr); } } return e300_addrs; } /*********************************************************************** * Make **********************************************************************/ static device::sptr e300_make(const device_addr_t &device_addr) { UHD_LOG << "e300_make with args " << device_addr.to_pp_string() << std::endl; if(device_addr.has_key("server")) throw uhd::runtime_error( str(boost::format("Please run the server executable \"%s\"") % "usrp_e3x0_network_mode")); else return device::sptr(new e300_impl(device_addr)); } /*********************************************************************** * Structors **********************************************************************/ e300_impl::e300_impl(const uhd::device_addr_t &device_addr) : _device_addr(device_addr) , _xport_path(device_addr.has_key("addr") ? ETH : AXI) , _sid_framer(0) { _type = uhd::device::USRP; _async_md.reset(new async_md_type(1000/*messages deep*/)); //////////////////////////////////////////////////////////////////// // load the fpga image //////////////////////////////////////////////////////////////////// if (_xport_path == AXI) { if (not device_addr.has_key("no_reload_fpga")) { // Load FPGA image if provided via args if (device_addr.has_key("fpga")) { common::load_fpga_image(device_addr["fpga"]); // Else load the FPGA image based on the product ID } else { //extract the FPGA path for the e300 const boost::uint16_t pid = boost::lexical_cast( device_addr["product"]); std::string fpga_image; switch(e300_eeprom_manager::get_mb_type(pid)) { case e300_eeprom_manager::USRP_E310_MB: fpga_image = find_image_path(E310_FPGA_FILE_NAME); break; case e300_eeprom_manager::USRP_E300_MB: fpga_image = find_image_path(E300_FPGA_FILE_NAME); break; case e300_eeprom_manager::UNKNOWN: default: UHD_MSG(warning) << "Unknown motherboard type, loading e300 image." << std::endl; fpga_image = find_image_path(E300_FPGA_FILE_NAME); break; } common::load_fpga_image(fpga_image); } } } //////////////////////////////////////////////////////////////////// // setup fifo xports //////////////////////////////////////////////////////////////////// _ctrl_xport_params.recv_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE; _ctrl_xport_params.num_recv_frames = e300::DEFAULT_CTRL_NUM_FRAMES; _ctrl_xport_params.send_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE; _ctrl_xport_params.num_send_frames = e300::DEFAULT_CTRL_NUM_FRAMES; _data_xport_params.recv_frame_size = e300::DEFAULT_RX_DATA_FRAME_SIZE; _data_xport_params.num_recv_frames = e300::DEFAULT_RX_DATA_NUM_FRAMES; _data_xport_params.send_frame_size = e300::DEFAULT_TX_DATA_FRAME_SIZE; _data_xport_params.num_send_frames = e300::DEFAULT_TX_DATA_NUM_FRAMES; // until we figure out why this goes wrong we'll keep this hack around if (_xport_path == ETH) { _data_xport_params.recv_frame_size = std::min(e300::MAX_NET_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size); _data_xport_params.send_frame_size = std::min(e300::MAX_NET_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size); } udp_zero_copy::buff_params dummy_buff_params_out; if (_xport_path == ETH) { zero_copy_if::sptr codec_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_CODEC_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr); _codec_ctrl = e300_remote_codec_ctrl::make(codec_xport); zero_copy_if::sptr gregs_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_GREGS_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr); _global_regs = global_regs::make(gregs_xport); zero_copy_if::sptr i2c_xport; i2c_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_I2C_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr); _eeprom_manager = boost::make_shared(i2c::make_zc(i2c_xport)); uhd::transport::zero_copy_xport_params sensor_xport_params; sensor_xport_params.recv_frame_size = 128; sensor_xport_params.num_recv_frames = 10; sensor_xport_params.send_frame_size = 128; sensor_xport_params.num_send_frames = 10; zero_copy_if::sptr sensors_xport; sensors_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_SENSOR_PORT, sensor_xport_params, dummy_buff_params_out, device_addr); _sensor_manager = e300_sensor_manager::make_proxy(sensors_xport); } else { e300_fifo_config_t fifo_cfg; try { fifo_cfg = e300_read_sysfs(); } catch (uhd::lookup_error &e) { throw uhd::runtime_error("Failed to get driver parameters from sysfs."); } _fifo_iface = e300_fifo_interface::make(fifo_cfg); _global_regs = global_regs::make(_fifo_iface->get_global_regs_base()); ad9361_params::sptr client_settings = boost::make_shared(); _codec_ctrl = ad9361_ctrl::make_spi(client_settings, spi::make(E300_SPIDEV_DEVICE), 1); // This is horrible ... why do I have to sleep here? boost::this_thread::sleep(boost::posix_time::milliseconds(100)); _eeprom_manager = boost::make_shared(i2c::make_i2cdev(E300_I2CDEV_DEVICE)); } UHD_MSG(status) << "Detecting internal GPSDO.... " << std::flush; if (_xport_path == AXI) { try { _gps = gps::ublox::ubx::control::make("/dev/ttyPS1", 9600); } catch (std::exception &e) { UHD_MSG(error) << "An error occured making GPSDO control: " << e.what() << std::endl; } _sensor_manager = e300_sensor_manager::make_local(_gps, _global_regs); } UHD_MSG(status) << (_sensor_manager->get_gps_found() ? "found" : "not found") << std::endl; // Verify we can talk to the e300 core control registers ... UHD_MSG(status) << "Initializing core control..." << std::endl; this->_register_loopback_self_test(_global_regs); // Verify fpga compatibility version matches at least for the major if (_get_version(FPGA_MAJOR) != fpga::COMPAT_MAJOR) { throw uhd::runtime_error(str(boost::format( "Expected FPGA compatibility number %lu.x, but got %lu.%lu:\n" "The FPGA build is not compatible with the host code build.\n" "%s" ) % fpga::COMPAT_MAJOR % _get_version(FPGA_MAJOR) % _get_version(FPGA_MINOR) % print_utility_error("uhd_images_downloader.py"))); } //////////////////////////////////////////////////////////////////// // Initialize the properties tree //////////////////////////////////////////////////////////////////// _tree = property_tree::make(); _tree->create("/name").set("E-Series Device"); const fs_path mb_path = "/mboards/0"; _tree->create(mb_path / "name") .set(_eeprom_manager->get_mb_type_string()); _tree->create(mb_path / "codename").set("Troll"); _tree->create(mb_path / "fpga_version").set( str(boost::format("%u.%u") % _get_version(FPGA_MAJOR) % _get_version(FPGA_MINOR))); _tree->create(mb_path / "fpga_version_hash").set( _get_version_hash()); //////////////////////////////////////////////////////////////////// // and do the misc mboard sensors //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "sensors"); BOOST_FOREACH(const std::string &name, _sensor_manager->get_sensors()) { _tree->create(mb_path / "sensors" / name) .publish(boost::bind(&e300_sensor_manager::get_sensor, _sensor_manager, name)); } //////////////////////////////////////////////////////////////////// // setup the mboard eeprom //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "eeprom") .set(_eeprom_manager->get_mb_eeprom()) // set first... .subscribe(boost::bind( &e300_eeprom_manager::write_mb_eeprom, _eeprom_manager, _1)); //////////////////////////////////////////////////////////////////// // clocking //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "tick_rate") .coerce(boost::bind(&e300_impl::_set_tick_rate, this, _1)) .publish(boost::bind(&e300_impl::_get_tick_rate, this)) .subscribe(boost::bind(&e300_impl::_update_tick_rate, this, _1)); //default some chains on -- needed for setup purposes _codec_ctrl->set_active_chains(true, false, true, false); _codec_ctrl->set_clock_rate(50e6); //////////////////////////////////////////////////////////////////// // setup radios //////////////////////////////////////////////////////////////////// for(size_t instance = 0; instance < fpga::NUM_RADIOS; instance++) this->_setup_radio(instance); _codec_ctrl->data_port_loopback(true); // Radio 0 loopback through AD9361 this->_codec_loopback_self_test(_radio_perifs[0].ctrl); // Radio 1 loopback through AD9361 this->_codec_loopback_self_test(_radio_perifs[1].ctrl); _codec_ctrl->data_port_loopback(false); //////////////////////////////////////////////////////////////////// // internal gpios //////////////////////////////////////////////////////////////////// gpio_core_200::sptr fp_gpio = gpio_core_200::make(_radio_perifs[0].ctrl, TOREG(SR_FP_GPIO), RB32_FP_GPIO); const std::vector gpio_attrs = boost::assign::list_of("CTRL")("DDR")("OUT")("ATR_0X")("ATR_RX")("ATR_TX")("ATR_XX"); BOOST_FOREACH(const std::string &attr, gpio_attrs) { _tree->create(mb_path / "gpio" / "INT0" / attr) .subscribe(boost::bind(&e300_impl::_set_internal_gpio, this, fp_gpio, attr, _1)) .set(0); } _tree->create(mb_path / "gpio" / "INT0" / "READBACK") .publish(boost::bind(&e300_impl::_get_internal_gpio, this, fp_gpio, "READBACK")); //////////////////////////////////////////////////////////////////// // register the time keepers - only one can be the highlander //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "time" / "now") .publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64)) .subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[0].time64, _1)) .subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[1].time64, _1)); _tree->create(mb_path / "time" / "pps") .publish(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64)) .subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[0].time64, _1)) .subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[1].time64, _1)); //setup time source props _tree->create(mb_path / "time_source" / "value") .subscribe(boost::bind(&e300_impl::_update_time_source, this, _1)) .set(e300::DEFAULT_TIME_SRC); static const std::vector time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo"); _tree->create >(mb_path / "time_source" / "options").set(time_sources); //setup reference source props _tree->create(mb_path / "clock_source" / "value") .subscribe(boost::bind(&e300_impl::_update_clock_source, this, _1)) .set(e300::DEFAULT_CLOCK_SRC); static const std::vector clock_sources = boost::assign::list_of("internal"); //external,gpsdo not supported _tree->create >(mb_path / "clock_source" / "options").set(clock_sources); //////////////////////////////////////////////////////////////////// // dboard eeproms but not really //////////////////////////////////////////////////////////////////// dboard_eeprom_t db_eeprom; _tree->create(mb_path / "dboards" / "A" / "rx_eeprom") .set(_eeprom_manager->get_db_eeprom()) .subscribe(boost::bind( &e300_eeprom_manager::write_db_eeprom, _eeprom_manager, _1)); _tree->create(mb_path / "dboards" / "A" / "tx_eeprom") .set(_eeprom_manager->get_db_eeprom()) .subscribe(boost::bind( &e300_eeprom_manager::write_db_eeprom, _eeprom_manager, _1)); _tree->create(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom); //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// { const fs_path codec_path = mb_path / ("rx_codecs") / "A"; _tree->create(codec_path / "name").set("E3x0 RX dual ADC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } { const fs_path codec_path = mb_path / ("tx_codecs") / "A"; _tree->create(codec_path / "name").set("E3x0 TX dual DAC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } //////////////////////////////////////////////////////////////////// // create frontend mapping //////////////////////////////////////////////////////////////////// std::vector default_map(2, 0); default_map[0] = 0; // set A->0 default_map[1] = 1; // set B->1, even if there's only A _tree->create >(mb_path / "rx_chan_dsp_mapping").set(default_map); _tree->create >(mb_path / "tx_chan_dsp_mapping").set(default_map); _tree->create(mb_path / "rx_subdev_spec") .set(subdev_spec_t()) .subscribe(boost::bind(&e300_impl::_update_subdev_spec, this, "rx", _1)); _tree->create(mb_path / "tx_subdev_spec") .set(subdev_spec_t()) .subscribe(boost::bind(&e300_impl::_update_subdev_spec, this, "tx", _1)); //////////////////////////////////////////////////////////////////// // do some post-init tasks //////////////////////////////////////////////////////////////////// // init the clock rate to something reasonable _tree->access(mb_path / "tick_rate").set( device_addr.cast("master_clock_rate", e300::DEFAULT_TICK_RATE)); // subdev spec contains full width of selections subdev_spec_t rx_spec, tx_spec; BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends")) { rx_spec.push_back(subdev_spec_pair_t("A", fe)); } BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends")) { tx_spec.push_back(subdev_spec_pair_t("A", fe)); } _tree->access(mb_path / "rx_subdev_spec").set(rx_spec); _tree->access(mb_path / "tx_subdev_spec").set(tx_spec); } boost::uint8_t e300_impl::_get_internal_gpio( gpio_core_200::sptr gpio, const std::string &) { return boost::uint32_t(gpio->read_gpio(dboard_iface::UNIT_RX)); } void e300_impl::_set_internal_gpio( gpio_core_200::sptr gpio, const std::string &attr, const boost::uint32_t value) { if (attr == "CTRL") return gpio->set_pin_ctrl(dboard_iface::UNIT_RX, value); else if (attr == "DDR") return gpio->set_gpio_ddr(dboard_iface::UNIT_RX, value); else if (attr == "OUT") return gpio->set_gpio_out(dboard_iface::UNIT_RX, value); else if (attr == "ATR_0X") return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, value); else if (attr == "ATR_RX") return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, value); else if (attr == "ATR_TX") return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, value); else if (attr == "ATR_XX") return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, value); } uhd::sensor_value_t e300_impl::_get_fe_pll_lock(const bool is_tx) { const boost::uint32_t st = _global_regs->peek32(global_regs::RB32_CORE_PLL); const bool locked = is_tx ? st & 0x1 : st & 0x2; return sensor_value_t("LO", locked, "locked", "unlocked"); } e300_impl::~e300_impl(void) { /* NOP */ } void e300_impl::_enforce_tick_rate_limits( const size_t chan_count, const double tick_rate, const std::string &direction) { const size_t max_chans = 2; if (chan_count > max_chans) { throw uhd::value_error(boost::str( boost::format("cannot not setup %d %s channels (maximum is %d)") % chan_count % direction % max_chans )); } else { const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2); if (tick_rate - max_tick_rate >= 1.0) { throw uhd::value_error(boost::str( boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d %s channels") % (tick_rate/1e6) % (max_tick_rate/1e6) % chan_count % direction )); } } } double e300_impl::_set_tick_rate(const double rate) { UHD_MSG(status) << "Asking for clock rate " << rate/1e6 << " MHz\n"; _tick_rate = _codec_ctrl->set_clock_rate(rate); UHD_MSG(status) << "Actually got clock rate " << _tick_rate/1e6 << " MHz\n"; BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { perif.time64->set_tick_rate(_tick_rate); perif.time64->self_test(); } return _tick_rate; } void e300_impl::_register_loopback_self_test(wb_iface::sptr iface) { bool test_fail = false; UHD_MSG(status) << "Performing register loopback test... " << std::flush; size_t hash = time(NULL); for (size_t i = 0; i < 100; i++) { boost::hash_combine(hash, i); iface->poke32(TOREG(SR_TEST), boost::uint32_t(hash)); test_fail = iface->peek32(RB32_TEST) != boost::uint32_t(hash); if (test_fail) break; //exit loop on any failure } UHD_MSG(status) << ((test_fail)? " fail" : "pass") << std::endl; } boost::uint32_t e300_impl::_get_version(compat_t which) { const boost::uint16_t compat_num = _global_regs->peek32(global_regs::RB32_CORE_COMPAT); switch(which) { case FPGA_MINOR: return compat_num & 0xff; case FPGA_MAJOR: return (compat_num & 0xff00) >> 8; default: throw uhd::value_error("Requested unknown version."); }; } std::string e300_impl::_get_version_hash(void) { const boost::uint32_t git_hash = _global_regs->peek32(global_regs::RB32_CORE_GITHASH); return str(boost::format("%7x%s") % (git_hash & 0x0FFFFFFF) % ((git_hash & 0xF000000) ? "-dirty" : "")); } void e300_impl::_codec_loopback_self_test(wb_iface::sptr iface) { bool test_fail = false; UHD_ASSERT_THROW(bool(iface)); UHD_MSG(status) << "Performing CODEC loopback test... " << std::flush; size_t hash = time(NULL); for (size_t i = 0; i < 100; i++) { boost::hash_combine(hash, i); const boost::uint32_t word32 = boost::uint32_t(hash) & 0xfff0fff0; iface->poke32(TOREG(SR_CODEC_IDLE), word32); iface->peek64(RB64_CODEC_READBACK); //enough idleness for loopback to propagate const boost::uint64_t rb_word64 = iface->peek64(RB64_CODEC_READBACK); const boost::uint32_t rb_tx = boost::uint32_t(rb_word64 >> 32); const boost::uint32_t rb_rx = boost::uint32_t(rb_word64 & 0xffffffff); test_fail = word32 != rb_tx or word32 != rb_rx; if (test_fail) break; //exit loop on any failure } UHD_MSG(status) << ((test_fail)? " fail" : "pass") << std::endl; /* Zero out the idle data. */ iface->poke32(TOREG(SR_CODEC_IDLE), 0); } boost::uint32_t e300_impl::_allocate_sid(const sid_config_t &config) { const boost::uint32_t stream = (config.dst_prefix | (config.router_dst_there << 2)) & 0xff; const boost::uint32_t sid = 0 | (E300_DEVICE_HERE << 24) | (_sid_framer << 16) | (config.router_addr_there << 8) | (stream << 0) ; UHD_LOG << std::hex << " sid 0x" << sid << " framer 0x" << _sid_framer << " stream 0x" << stream << " router_dst_there 0x" << int(config.router_dst_there) << " router_addr_there 0x" << int(config.router_addr_there) << std::dec << std::endl; // Program the E300 to recognize it's own local address. _global_regs->poke32(global_regs::SR_CORE_XB_LOCAL, config.router_addr_there); // Program CAM entry for outgoing packets matching a E300 resource (e.g. Radio). // This type of packet matches the XB_LOCAL address and is looked up in the upper // half of the CAM _global_regs->poke32(XB_ADDR(256 + stream), config.router_dst_there); // Program CAM entry for returning packets to us (for example GR host via zynq_fifo) // This type of packet does not match the XB_LOCAL address and is looked up in the lower half of the CAM _global_regs->poke32(XB_ADDR(E300_DEVICE_HERE), config.router_dst_here); UHD_LOG << std::hex << "done router config for sid 0x" << sid << std::dec << std::endl; //increment for next setup _sid_framer++; return sid; } void e300_impl::_setup_dest_mapping(const boost::uint32_t sid, const size_t which_stream) { UHD_LOG << boost::format("Setting up dest map for 0x%lx to be stream %d") % (sid & 0xff) % which_stream << std::endl; _global_regs->poke32(DST_ADDR(sid & 0xff), which_stream); } void e300_impl::_update_time_source(const std::string &source) { UHD_MSG(status) << boost::format("Setting time source to %s") % source << std::endl; if (source == "none" or source == "internal") { _misc.pps_sel = global_regs::PPS_INT; } else if (source == "gpsdo") { _misc.pps_sel = global_regs::PPS_GPS; } else if (source == "external") { _misc.pps_sel = global_regs::PPS_EXT; } else { throw uhd::key_error("update_time_source: unknown source: " + source); } _update_gpio_state(); } size_t e300_impl::_get_axi_dma_channel( boost::uint8_t destination, boost::uint8_t prefix) { static const boost::uint32_t RADIO_GRP_SIZE = 4; static const boost::uint32_t RADIO0_GRP = 0; static const boost::uint32_t RADIO1_GRP = 1; boost::uint32_t radio_grp = (destination == E300_XB_DST_R0) ? RADIO0_GRP : RADIO1_GRP; return ((radio_grp * RADIO_GRP_SIZE) + prefix); } boost::uint16_t e300_impl::_get_udp_port( boost::uint8_t destination, boost::uint8_t prefix) { if (destination == E300_XB_DST_R0) { if (prefix == E300_RADIO_DEST_PREFIX_CTRL) return boost::lexical_cast(E300_SERVER_CTRL_PORT0); else if (prefix == E300_RADIO_DEST_PREFIX_TX) return boost::lexical_cast(E300_SERVER_TX_PORT0); else if (prefix == E300_RADIO_DEST_PREFIX_RX) return boost::lexical_cast(E300_SERVER_RX_PORT0); } else if (destination == E300_XB_DST_R1) { if (prefix == E300_RADIO_DEST_PREFIX_CTRL) return boost::lexical_cast(E300_SERVER_CTRL_PORT1); else if (prefix == E300_RADIO_DEST_PREFIX_TX) return boost::lexical_cast(E300_SERVER_TX_PORT1); else if (prefix == E300_RADIO_DEST_PREFIX_RX) return boost::lexical_cast(E300_SERVER_RX_PORT1); } throw uhd::value_error(str(boost::format("No UDP port defined for combination: %u %u") % destination % prefix)); } e300_impl::both_xports_t e300_impl::_make_transport( const boost::uint8_t &destination, const boost::uint8_t &prefix, const uhd::transport::zero_copy_xport_params ¶ms, boost::uint32_t &sid) { both_xports_t xports; sid_config_t config; config.router_addr_there = E300_DEVICE_THERE; config.dst_prefix = prefix; config.router_dst_there = destination; config.router_dst_here = E300_XB_DST_AXI; sid = this->_allocate_sid(config); // in local mode if (_xport_path == AXI) { // lookup which dma channel we need // to use to create our transport const size_t stream = _get_axi_dma_channel( destination, prefix); xports.send = _fifo_iface->make_send_xport(stream, params); xports.recv = _fifo_iface->make_recv_xport(stream, params); // in network mode } else if (_xport_path == ETH) { // lookup which udp port we need // to use to create our transport const boost::uint16_t port = _get_udp_port( destination, prefix); udp_zero_copy::buff_params dummy_buff_params_out; xports.send = udp_zero_copy::make( _device_addr["addr"], str(boost::format("%u") % port), params, dummy_buff_params_out, _device_addr); // use the same xport in both directions xports.recv = xports.send; } // configure the return path _setup_dest_mapping(sid, _get_axi_dma_channel(destination, prefix)); return xports; } void e300_impl::_update_clock_source(const std::string &source) { if (source != "internal") { throw uhd::value_error(boost::str( boost::format("Clock source option not supported: %s. The only value supported is \"internal\". " \ "To discipline the internal oscillator, set the appropriate time source.") % source )); } } void e300_impl::_update_antenna_sel(const size_t &which, const std::string &ant) { if (ant != "TX/RX" and ant != "RX2") throw uhd::value_error("Unknown RX antenna option: " + ant); _radio_perifs[which].ant_rx2 = (ant == "RX2"); this->_update_atrs(); } void e300_impl::_update_fe_lo_freq(const std::string &fe, const double freq) { if (fe[0] == 'R') _settings.rx_freq = freq; if (fe[0] == 'T') _settings.tx_freq = freq; this->_update_atrs(); _update_bandsel(fe, freq); } void e300_impl::_setup_radio(const size_t dspno) { radio_perifs_t &perif = _radio_perifs[dspno]; const fs_path mb_path = "/mboards/0"; //////////////////////////////////////////////////////////////////// // crossbar config for ctrl xports //////////////////////////////////////////////////////////////////// // make a transport, grab a sid boost::uint32_t ctrl_sid; both_xports_t ctrl_xports = _make_transport( dspno ? E300_XB_DST_R1 : E300_XB_DST_R0, E300_RADIO_DEST_PREFIX_CTRL, _ctrl_xport_params, ctrl_sid); this->_setup_dest_mapping( ctrl_sid, dspno ? E300_R1_CTRL_STREAM : E300_R0_CTRL_STREAM); //////////////////////////////////////////////////////////////////// // radio control //////////////////////////////////////////////////////////////////// perif.ctrl = radio_ctrl_core_3000::make( false/*lilE*/, ctrl_xports.send, ctrl_xports.recv, ctrl_sid, dspno ? "1" : "0"); this->_register_loopback_self_test(perif.ctrl); perif.atr = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_GPIO)); //////////////////////////////////////////////////////////////////// // front end corrections //////////////////////////////////////////////////////////////////// std::string slot_name = (dspno == 0) ? "A" : "B"; perif.rx_fe = rx_frontend_core_200::make(perif.ctrl, TOREG(SR_RX_FRONT)); const fs_path rx_fe_path = mb_path / "rx_frontends" / slot_name; _tree->create >(rx_fe_path / "dc_offset" / "value") .coerce(boost::bind(&rx_frontend_core_200::set_dc_offset, perif.rx_fe, _1)) .set(std::complex(0.0, 0.0)); _tree->create(rx_fe_path / "dc_offset" / "enable") .subscribe(boost::bind(&rx_frontend_core_200::set_dc_offset_auto, perif.rx_fe, _1)) .set(true); _tree->create >(rx_fe_path / "iq_balance" / "value") .subscribe(boost::bind(&rx_frontend_core_200::set_iq_balance, perif.rx_fe, _1)) .set(std::complex(0.0, 0.0)); perif.tx_fe = tx_frontend_core_200::make(perif.ctrl, TOREG(SR_TX_FRONT)); const fs_path tx_fe_path = mb_path / "tx_frontends" / slot_name; _tree->create >(tx_fe_path / "dc_offset" / "value") .coerce(boost::bind(&tx_frontend_core_200::set_dc_offset, perif.tx_fe, _1)) .set(std::complex(0.0, 0.0)); _tree->create >(tx_fe_path / "iq_balance" / "value") .subscribe(boost::bind(&tx_frontend_core_200::set_iq_balance, perif.tx_fe, _1)) .set(std::complex(0.0, 0.0)); //////////////////////////////////////////////////////////////////// // create rx dsp control objects //////////////////////////////////////////////////////////////////// perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL)); perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP)); perif.ddc->set_link_rate(10e9/8); //whatever _tree->access(mb_path / "tick_rate") .subscribe(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1)) .subscribe(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1)); const fs_path rx_dsp_path = mb_path / "rx_dsps" / str(boost::format("%u") % dspno); _tree->create(rx_dsp_path / "rate" / "range") .publish(boost::bind(&rx_dsp_core_3000::get_host_rates, perif.ddc)); _tree->create(rx_dsp_path / "rate" / "value") .coerce(boost::bind(&rx_dsp_core_3000::set_host_rate, perif.ddc, _1)) .subscribe(boost::bind(&e300_impl::_update_rx_samp_rate, this, dspno, _1)) .set(e300::DEFAULT_RX_SAMP_RATE); _tree->create(rx_dsp_path / "freq" / "value") .coerce(boost::bind(&rx_dsp_core_3000::set_freq, perif.ddc, _1)) .set(e300::DEFAULT_DDC_FREQ); _tree->create(rx_dsp_path / "freq" / "range") .publish(boost::bind(&rx_dsp_core_3000::get_freq_range, perif.ddc)); _tree->create(rx_dsp_path / "stream_cmd") .subscribe(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1)); //////////////////////////////////////////////////////////////////// // create tx dsp control objects //////////////////////////////////////////////////////////////////// perif.deframer = tx_vita_core_3000::make(perif.ctrl, TOREG(SR_TX_CTRL)); perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP)); perif.duc->set_link_rate(10e9/8); //whatever _tree->access(mb_path / "tick_rate") .subscribe(boost::bind(&tx_vita_core_3000::set_tick_rate, perif.deframer, _1)) .subscribe(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1)); const fs_path tx_dsp_path = mb_path / "tx_dsps" / str(boost::format("%u") % dspno); _tree->create(tx_dsp_path / "rate" / "range") .publish(boost::bind(&tx_dsp_core_3000::get_host_rates, perif.duc)); _tree->create(tx_dsp_path / "rate" / "value") .coerce(boost::bind(&tx_dsp_core_3000::set_host_rate, perif.duc, _1)) .subscribe(boost::bind(&e300_impl::_update_tx_samp_rate, this, dspno, _1)) .set(e300::DEFAULT_TX_SAMP_RATE); _tree->create(tx_dsp_path / "freq" / "value") .coerce(boost::bind(&tx_dsp_core_3000::set_freq, perif.duc, _1)) .set(e300::DEFAULT_DUC_FREQ); _tree->create(tx_dsp_path / "freq" / "range") .publish(boost::bind(&tx_dsp_core_3000::get_freq_range, perif.duc)); //////////////////////////////////////////////////////////////////// // create time control objects //////////////////////////////////////////////////////////////////// time_core_3000::readback_bases_type time64_rb_bases; time64_rb_bases.rb_now = RB64_TIME_NOW; time64_rb_bases.rb_pps = RB64_TIME_PPS; perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases); //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// static const std::vector data_directions = boost::assign::list_of("rx")("tx"); BOOST_FOREACH(const std::string& direction, data_directions) { const std::string key = boost::to_upper_copy(direction) + std::string(((dspno == FE0)? "1" : "2")); const fs_path rf_fe_path = mb_path / "dboards" / "A" / (direction + "_frontends") / ((dspno == 0) ? "A" : "B"); _tree->create(rf_fe_path / "name").set("FE-"+key); _tree->create(rf_fe_path / "sensors"); //empty TODO _tree->create(rf_fe_path / "sensors" / "lo_locked") .publish(boost::bind(&e300_impl::_get_fe_pll_lock, this, direction == "tx")); BOOST_FOREACH(const std::string &name, ad9361_ctrl::get_gain_names(key)) { _tree->create(rf_fe_path / "gains" / name / "range") .set(ad9361_ctrl::get_gain_range(key)); _tree->create(rf_fe_path / "gains" / name / "value") .coerce(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1)) .set(e300::DEFAULT_FE_GAIN); } _tree->create(rf_fe_path / "connection").set("IQ"); _tree->create(rf_fe_path / "enabled").set(true); _tree->create(rf_fe_path / "use_lo_offset").set(false); _tree->create(rf_fe_path / "bandwidth" / "value") .coerce(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1)) .set(e300::DEFAULT_FE_BW); _tree->create(rf_fe_path / "bandwidth" / "range") .publish(boost::bind(&ad9361_ctrl::get_bw_filter_range, key)); _tree->create(rf_fe_path / "freq" / "value") .coerce(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1)) .subscribe(boost::bind(&e300_impl::_update_fe_lo_freq, this, key, _1)) .set(e300::DEFAULT_FE_FREQ); _tree->create(rf_fe_path / "freq" / "range") .publish(boost::bind(&ad9361_ctrl::get_rf_freq_range)); //setup RX related stuff if (key[0] == 'R') { static const std::vector ants = boost::assign::list_of("TX/RX")("RX2"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value") .subscribe(boost::bind(&e300_impl::_update_antenna_sel, this, dspno, _1)) .set("RX2"); _tree->create(rf_fe_path / "sensors" / "rssi") .publish(boost::bind(&ad9361_ctrl::get_rssi, _codec_ctrl, key)); } if (key[0] == 'T') { static const std::vector ants(1, "TX/RX"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value").set("TX/RX"); } } } void e300_impl::_update_enables(void) { //extract settings from state variables const bool enb_tx1 = bool(_radio_perifs[FE0].tx_streamer.lock()); const bool enb_rx1 = bool(_radio_perifs[FE0].rx_streamer.lock()); const bool enb_tx2 = bool(_radio_perifs[FE1].tx_streamer.lock()); const bool enb_rx2 = bool(_radio_perifs[FE1].rx_streamer.lock()); const size_t num_rx = (enb_rx1 ? 1 : 0) + (enb_rx2 ? 1:0); const size_t num_tx = (enb_tx1 ? 1 : 0) + (enb_tx2 ? 1:0); const bool mimo = num_rx == 2 or num_tx == 2; //setup the active chains in the codec _codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2); if ((num_rx + num_tx) == 0) _codec_ctrl->set_active_chains( true, false, true, false); // enable something //set_active_chains could cause a clock rate change - reset dcm _reset_codec_mmcm(); //figure out if mimo is enabled based on new state _misc.mimo = (mimo)? 1 : 0; _update_gpio_state(); //atrs change based on enables _update_atrs(); } void e300_impl::_update_gpio_state(void) { boost::uint32_t misc_reg = 0 | (_misc.pps_sel << gpio_t::PPS_SEL) | (_misc.mimo << gpio_t::MIMO) | (_misc.codec_arst << gpio_t::CODEC_ARST) | (_misc.tx_bandsels << gpio_t::TX_BANDSEL) | (_misc.rx_bandsel_a << gpio_t::RX_BANDSELA) | (_misc.rx_bandsel_b << gpio_t::RX_BANDSELB) | (_misc.rx_bandsel_c << gpio_t::RX_BANDSELC); _global_regs->poke32(global_regs::SR_CORE_MISC, misc_reg); } void e300_impl::_reset_codec_mmcm(void) { _misc.codec_arst = 1; _update_gpio_state(); boost::this_thread::sleep(boost::posix_time::milliseconds(10)); _misc.codec_arst = 0; _update_gpio_state(); } //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// //////////////// ATR SETUP FOR FRONTEND CONTROL VIA GPIO /////////////// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// void e300_impl::_update_bandsel(const std::string& which, double freq) { if(which[0] == 'R') { if (freq < 450e6) { _misc.rx_bandsel_a = 44; // 4 | (5 << 3) _misc.rx_bandsel_b = 0; // 0 | (0 << 2) _misc.rx_bandsel_c = 6; // 2 | (1 << 2) } else if (freq < 700e6) { _misc.rx_bandsel_a = 26; // 2 | (3 << 3) _misc.rx_bandsel_b = 0; // 0 | (0 << 2) _misc.rx_bandsel_c = 15; // 3 | (3 << 2) } else if (freq < 1200e6) { _misc.rx_bandsel_a = 8; // 0 | (1 << 3) _misc.rx_bandsel_b = 0; // 0 | (0 << 2) _misc.rx_bandsel_c = 9; // 1 | (2 << 2) } else if (freq < 1800e6) { _misc.rx_bandsel_a = 1; // 1 | (0 << 3) _misc.rx_bandsel_b = 6; // 2 | (1 << 2) _misc.rx_bandsel_c = 0; // 0 | (0 << 2) } else if (freq < 2350e6){ _misc.rx_bandsel_a = 19; // 3 | (2 << 3) _misc.rx_bandsel_b = 15; // 3 | (3 << 2) _misc.rx_bandsel_c = 0; // 0 | (0 << 2) } else if (freq < 2600e6){ _misc.rx_bandsel_a = 37; // 5 | (4 << 3) _misc.rx_bandsel_b = 9; // 1 | (2 << 2) _misc.rx_bandsel_c = 0; // 0 | (0 << 2) } else { _misc.rx_bandsel_a = 0; _misc.rx_bandsel_b = 0; _misc.rx_bandsel_c = 0; } _update_gpio_state(); } else if(which[0] == 'T') { if (freq < 117.7e6) _misc.tx_bandsels = 7; else if (freq < 178.2e6) _misc.tx_bandsels = 6; else if (freq < 284.3e6) _misc.tx_bandsels = 5; else if (freq < 453.7e6) _misc.tx_bandsels = 4; else if (freq < 723.8e6) _misc.tx_bandsels = 3; else if (freq < 1154.9e6) _misc.tx_bandsels = 2; else if (freq < 1842.6e6) _misc.tx_bandsels = 1; else if (freq < 2940.0e6) _misc.tx_bandsels = 0; else _misc.tx_bandsels = 7; _update_gpio_state(); } else { UHD_THROW_INVALID_CODE_PATH(); } } void e300_impl::_update_atrs(void) { for (size_t instance = 0; instance < fpga::NUM_RADIOS; instance++) { // if we're not ready, no point ... if (not _radio_perifs[instance].atr) return; radio_perifs_t &perif = _radio_perifs[instance]; const bool enb_rx = bool(perif.rx_streamer.lock()); const bool enb_tx = bool(perif.tx_streamer.lock()); const bool rx_ant_rx2 = perif.ant_rx2; const bool rx_low_band = _settings.rx_freq < 2.6e9; const bool tx_low_band = _settings.tx_freq < 2940.0e6; // VCRX int vcrx_v1_rxing = 1; int vcrx_v2_rxing = 0; int vcrx_v1_txing = 1; int vcrx_v2_txing = 0; if (rx_low_band) { vcrx_v1_rxing = rx_ant_rx2 ? 0 : 1; vcrx_v2_rxing = rx_ant_rx2 ? 1 : 0; vcrx_v1_txing = 0; vcrx_v2_txing = 1; } else { vcrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vcrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vcrx_v1_txing = 1; vcrx_v2_txing = 0; } // VCTX int vctxrx_v1_rxing = 0; int vctxrx_v2_rxing = 1; int vctxrx_v1_txing = 0; int vctxrx_v2_txing = 1; if (tx_low_band) { vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vctxrx_v1_txing = 1; vctxrx_v2_txing = 0; } else { vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0; vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1; vctxrx_v1_txing = 1; vctxrx_v2_txing = 1; } //swapped for routing reasons, reswap it here if (instance == 1) { std::swap(vctxrx_v1_rxing, vctxrx_v2_rxing); std::swap(vctxrx_v1_txing, vctxrx_v2_txing); } int tx_enable_a = (!tx_low_band and enb_tx) ? 1 : 0; int tx_enable_b = (tx_low_band and enb_tx) ? 1 : 0; //----------------- LEDS ----------------------------// const int led_rx2 = rx_ant_rx2 ? 1 : 0; const int led_txrx = !rx_ant_rx2 ? 1 : 0; const int led_tx = 1; const int rx_leds = (led_rx2 << LED_RX_RX) | (led_txrx << LED_TXRX_RX); const int tx_leds = (led_tx << LED_TXRX_TX); const int xx_leds = tx_leds | (1 << LED_RX_RX); //forced to rx2 const int rx_selects = 0 | (vcrx_v1_rxing << VCRX_V1) | (vcrx_v2_rxing << VCRX_V2) | (vctxrx_v1_rxing << VCTXRX_V1) | (vctxrx_v2_rxing << VCTXRX_V2) ; const int tx_selects = 0 | (vcrx_v1_txing << VCRX_V1) | (vcrx_v2_txing << VCRX_V2) | (vctxrx_v1_txing << VCTXRX_V1) | (vctxrx_v2_txing << VCTXRX_V2) ; const int tx_enables = 0 | (tx_enable_a << TX_ENABLEA) | (tx_enable_b << TX_ENABLEB) ; //default selects int oo_reg = rx_selects; int rx_reg = rx_selects; int tx_reg = tx_selects; int fd_reg = tx_selects; //tx selects dominate in fd mode //add in leds and tx enables based on fe enable if (enb_rx) rx_reg |= rx_leds; if (enb_rx) fd_reg |= xx_leds; if (enb_tx) tx_reg |= tx_enables | tx_leds; if (enb_tx) fd_reg |= tx_enables | xx_leds; gpio_core_200_32wo::sptr atr = _radio_perifs[instance].atr; atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, oo_reg); atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rx_reg); atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, tx_reg); atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd_reg); } } }}} // namespace UHD_STATIC_BLOCK(register_e300_device) { device::register_device(&uhd::usrp::e300::e300_find, &uhd::usrp::e300::e300_make, uhd::device::USRP); }