//
// Copyright 2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "e300_impl.hpp"
#include "e300_defaults.hpp"
#include "e300_fpga_defs.hpp"
#include "e300_spi.hpp"
#include "e300_regs.hpp"
#include "e300_eeprom_manager.hpp"
#include "e300_sensor_manager.hpp"
#include "e300_common.hpp"
#include "e300_remote_codec_ctrl.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include //sleep
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
namespace fs = boost::filesystem;
namespace asio = boost::asio;
//! mapping of frontend to radio perif index
static const size_t FE0 = 1;
static const size_t FE1 = 0;
namespace uhd { namespace usrp { namespace e300 {
/***********************************************************************
* Discovery
**********************************************************************/
static std::vector discover_ip_addrs(
const std::string& addr_hint, const std::string& port)
{
std::vector addrs;
// Create a UDP transport to communicate:
// Some devices will cause a throw when opened for a broadcast address.
// We print and recover so the caller can loop through all bcast addrs.
uhd::transport::udp_simple::sptr udp_bcast_xport;
try {
udp_bcast_xport = uhd::transport::udp_simple::make_broadcast(addr_hint, port);
} catch(const std::exception &e) {
UHD_MSG(error) << boost::format("Cannot open UDP transport on %s for discovery\n%s")
% addr_hint % e.what() << std::endl;
return addrs;
} catch(...) {
UHD_MSG(error) << "E300 Network discovery unknown error" << std::endl;
return addrs;
}
// TODO: Do not abuse the I2C transport here ...
// we send a read request to i2c address 0x51,
// to read register 0
i2c_transaction_t req;
req.type = i2c::READ | i2c::ONEBYTE;
req.addr = 0x51; // mboard's eeprom address, we don't really care
req.reg = 4;
// send dummy request
try {
udp_bcast_xport->send(boost::asio::buffer(&req, sizeof(req)));
} catch (const std::exception &ex) {
UHD_MSG(error) << "E300 Network discovery error " << ex.what() << std::endl;
return addrs;
} catch(...) {
UHD_MSG(error) << "E300 Network discovery unknown error" << std::endl;
return addrs;
}
// loop for replies until timeout
while (true) {
boost::uint8_t buff[sizeof(i2c_transaction_t)] = {};
const size_t nbytes = udp_bcast_xport->recv(boost::asio::buffer(buff), 0.050);
if (nbytes == 0)
break; //No more responses
const i2c_transaction_t *reply = reinterpret_cast(buff);
if (req.addr == reply->addr)
addrs.push_back(udp_bcast_xport->get_recv_addr());
}
return addrs;
}
static bool is_loopback(const if_addrs_t &if_addrs)
{
return if_addrs.inet == asio::ip::address_v4::loopback().to_string();
}
static device_addrs_t e300_find(const device_addr_t &multi_dev_hint)
{
// handle multi device discovery
device_addrs_t hints = separate_device_addr(multi_dev_hint);
if (hints.size() > 1) {
device_addrs_t found_devices;
std::string err_msg;
BOOST_FOREACH(const device_addr_t &hint_i, hints)
{
device_addrs_t found_devices_i = e300_find(hint_i);
if(found_devices_i.size() != 1)
err_msg += str(boost::format(
"Could not resolve device hint \"%s\" to a single device.")
% hint_i.to_string());
else
found_devices.push_back(found_devices_i[0]);
if (found_devices.empty())
return device_addrs_t();
if (not err_msg.empty())
throw uhd::value_error(err_msg);
}
return device_addrs_t(1, combine_device_addrs(found_devices));
}
// initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); // in case it was empty
device_addr_t hint = hints[0];
device_addrs_t e300_addrs;
// return an empty list of addresses when type is set to non-e300
if (hint.has_key("type") and hint["type"] != "e3x0")
return e300_addrs;
const bool loopback_only =
get_if_addrs().size() == 1 and is_loopback(get_if_addrs().at(0));
// if we don't have connectivity, we might as well skip the network part
if (not loopback_only) {
// if no address or node has been specified, send a broadcast
if ((not hint.has_key("addr")) and (not hint.has_key("node"))) {
BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs())
{
// avoid the loopback device
if (is_loopback(if_addrs))
continue;
// create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
// call discover with the new hint ad append results
device_addrs_t new_e300_addrs = e300_find(new_hint);
e300_addrs.insert(e300_addrs.begin(),
new_e300_addrs.begin(), new_e300_addrs.end());
}
return e300_addrs;
}
std::vector ip_addrs = discover_ip_addrs(
hint["addr"], E300_SERVER_I2C_PORT);
BOOST_FOREACH(const std::string &ip_addr, ip_addrs)
{
device_addr_t new_addr;
new_addr["type"] = "e3x0";
new_addr["addr"] = ip_addr;
// see if we can read the eeprom
try {
e300_eeprom_manager eeprom_manager(
i2c::make_simple_udp(new_addr["addr"], E300_SERVER_I2C_PORT));
const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
new_addr["name"] = eeprom["name"];
new_addr["serial"] = eeprom["serial"];
new_addr["product"] = eeprom["product"];
} catch (...) {
// set these values as empty string, so the device may still be found
// and the filters below can still operate on the discovered device
new_addr["name"] = "";
new_addr["serial"] = "";
}
// filter the discovered device below by matching optional keys
if ((not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
{
e300_addrs.push_back(new_addr);
}
}
}
// finally search locally
// if device node is not provided,
// use the default one
if (not hint.has_key("node")) {
device_addr_t new_addr = hint;
new_addr["node"] = "/dev/axi_fpga";
return e300_find(new_addr);
}
// use the given node
if (fs::exists(hint["node"])) {
device_addr_t new_addr;
new_addr["type"] = "e3x0";
new_addr["node"] = fs::system_complete(fs::path(hint["node"])).string();
try {
e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
new_addr["name"] = eeprom["name"];
new_addr["serial"] = eeprom["serial"];
new_addr["product"] = eeprom["product"];
} catch (...) {
// set these values as empty string, so the device may still be found
// and the filters below can still operate on the discovered device
new_addr["name"] = "";
new_addr["serial"] = "";
}
// filter the discovered device below by matching optional keys
if ((not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
{
e300_addrs.push_back(new_addr);
}
}
return e300_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr e300_make(const device_addr_t &device_addr)
{
UHD_LOG << "e300_make with args " << device_addr.to_pp_string() << std::endl;
if(device_addr.has_key("server"))
throw uhd::runtime_error(
str(boost::format("Please run the server executable \"%s\"")
% "usrp_e3x0_network_mode"));
else
return device::sptr(new e300_impl(device_addr));
}
/***********************************************************************
* Structors
**********************************************************************/
e300_impl::e300_impl(const uhd::device_addr_t &device_addr)
: _device_addr(device_addr)
, _xport_path(device_addr.has_key("addr") ? ETH : AXI)
, _sid_framer(0)
{
_type = uhd::device::USRP;
_async_md.reset(new async_md_type(1000/*messages deep*/));
////////////////////////////////////////////////////////////////////
// load the fpga image
////////////////////////////////////////////////////////////////////
if (_xport_path == AXI) {
if (not device_addr.has_key("no_reload_fpga")) {
// Load FPGA image if provided via args
if (device_addr.has_key("fpga")) {
common::load_fpga_image(device_addr["fpga"]);
// Else load the FPGA image based on the product ID
} else {
//extract the FPGA path for the e300
const boost::uint16_t pid = boost::lexical_cast(
device_addr["product"]);
std::string fpga_image;
switch(e300_eeprom_manager::get_mb_type(pid)) {
case e300_eeprom_manager::USRP_E310_MB:
fpga_image = find_image_path(E310_FPGA_FILE_NAME);
break;
case e300_eeprom_manager::USRP_E300_MB:
fpga_image = find_image_path(E300_FPGA_FILE_NAME);
break;
case e300_eeprom_manager::UNKNOWN:
default:
UHD_MSG(warning) << "Unknown motherboard type, loading e300 image."
<< std::endl;
fpga_image = find_image_path(E300_FPGA_FILE_NAME);
break;
}
common::load_fpga_image(fpga_image);
}
}
}
////////////////////////////////////////////////////////////////////
// setup fifo xports
////////////////////////////////////////////////////////////////////
_ctrl_xport_params.recv_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
_ctrl_xport_params.num_recv_frames = e300::DEFAULT_CTRL_NUM_FRAMES;
_ctrl_xport_params.send_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
_ctrl_xport_params.num_send_frames = e300::DEFAULT_CTRL_NUM_FRAMES;
_data_xport_params.recv_frame_size = e300::DEFAULT_RX_DATA_FRAME_SIZE;
_data_xport_params.num_recv_frames = e300::DEFAULT_RX_DATA_NUM_FRAMES;
_data_xport_params.send_frame_size = e300::DEFAULT_TX_DATA_FRAME_SIZE;
_data_xport_params.num_send_frames = e300::DEFAULT_TX_DATA_NUM_FRAMES;
// until we figure out why this goes wrong we'll keep this hack around
if (_xport_path == ETH) {
_data_xport_params.recv_frame_size =
std::min(e300::MAX_NET_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size);
_data_xport_params.send_frame_size =
std::min(e300::MAX_NET_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size);
}
udp_zero_copy::buff_params dummy_buff_params_out;
if (_xport_path == ETH) {
zero_copy_if::sptr codec_xport =
udp_zero_copy::make(device_addr["addr"], E300_SERVER_CODEC_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
_codec_ctrl = e300_remote_codec_ctrl::make(codec_xport);
zero_copy_if::sptr gregs_xport =
udp_zero_copy::make(device_addr["addr"], E300_SERVER_GREGS_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
_global_regs = global_regs::make(gregs_xport);
zero_copy_if::sptr i2c_xport;
i2c_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_I2C_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
_eeprom_manager = boost::make_shared(i2c::make_zc(i2c_xport));
uhd::transport::zero_copy_xport_params sensor_xport_params;
sensor_xport_params.recv_frame_size = 128;
sensor_xport_params.num_recv_frames = 10;
sensor_xport_params.send_frame_size = 128;
sensor_xport_params.num_send_frames = 10;
zero_copy_if::sptr sensors_xport;
sensors_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_SENSOR_PORT, sensor_xport_params, dummy_buff_params_out, device_addr);
_sensor_manager = e300_sensor_manager::make_proxy(sensors_xport);
} else {
e300_fifo_config_t fifo_cfg;
try {
fifo_cfg = e300_read_sysfs();
} catch (uhd::lookup_error &e) {
throw uhd::runtime_error("Failed to get driver parameters from sysfs.");
}
_fifo_iface = e300_fifo_interface::make(fifo_cfg);
_global_regs = global_regs::make(_fifo_iface->get_global_regs_base());
ad9361_params::sptr client_settings = boost::make_shared();
_codec_ctrl = ad9361_ctrl::make_spi(client_settings, spi::make(E300_SPIDEV_DEVICE), 1);
// This is horrible ... why do I have to sleep here?
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
_eeprom_manager = boost::make_shared(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
}
UHD_MSG(status) << "Detecting internal GPSDO.... " << std::flush;
if (_xport_path == AXI) {
try {
_gps = gps::ublox::ubx::control::make("/dev/ttyPS1", 9600);
} catch (std::exception &e) {
UHD_MSG(error) << "An error occured making GPSDO control: " << e.what() << std::endl;
}
_sensor_manager = e300_sensor_manager::make_local(_gps, _global_regs);
}
UHD_MSG(status) << (_sensor_manager->get_gps_found() ? "found" : "not found") << std::endl;
// Verify we can talk to the e300 core control registers ...
UHD_MSG(status) << "Initializing core control..." << std::endl;
this->_register_loopback_self_test(_global_regs);
// Verify fpga compatibility version matches at least for the major
if (_get_version(FPGA_MAJOR) != fpga::COMPAT_MAJOR) {
throw uhd::runtime_error(str(boost::format(
"Expected FPGA compatibility number %lu.x, but got %lu.%lu:\n"
"The FPGA build is not compatible with the host code build.\n"
"%s"
) % fpga::COMPAT_MAJOR
% _get_version(FPGA_MAJOR) % _get_version(FPGA_MINOR)
% print_utility_error("uhd_images_downloader.py")));
}
////////////////////////////////////////////////////////////////////
// Initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_tree->create("/name").set("E-Series Device");
const fs_path mb_path = "/mboards/0";
_tree->create(mb_path / "name")
.set(_eeprom_manager->get_mb_type_string());
_tree->create(mb_path / "codename").set("Troll");
_tree->create(mb_path / "fpga_version").set(
str(boost::format("%u.%u")
% _get_version(FPGA_MAJOR)
% _get_version(FPGA_MINOR)));
_tree->create(mb_path / "fpga_version_hash").set(
_get_version_hash());
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "sensors");
BOOST_FOREACH(const std::string &name, _sensor_manager->get_sensors())
{
_tree->create(mb_path / "sensors" / name)
.publish(boost::bind(&e300_sensor_manager::get_sensor, _sensor_manager, name));
}
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "eeprom")
.set(_eeprom_manager->get_mb_eeprom()) // set first...
.subscribe(boost::bind(
&e300_eeprom_manager::write_mb_eeprom,
_eeprom_manager, _1));
////////////////////////////////////////////////////////////////////
// clocking
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "tick_rate")
.coerce(boost::bind(&e300_impl::_set_tick_rate, this, _1))
.publish(boost::bind(&e300_impl::_get_tick_rate, this))
.subscribe(boost::bind(&e300_impl::_update_tick_rate, this, _1));
//default some chains on -- needed for setup purposes
_codec_ctrl->set_active_chains(true, false, true, false);
_codec_ctrl->set_clock_rate(50e6);
////////////////////////////////////////////////////////////////////
// setup radios
////////////////////////////////////////////////////////////////////
for(size_t instance = 0; instance < fpga::NUM_RADIOS; instance++)
this->_setup_radio(instance);
_codec_ctrl->data_port_loopback(true);
// Radio 0 loopback through AD9361
this->_codec_loopback_self_test(_radio_perifs[0].ctrl);
// Radio 1 loopback through AD9361
this->_codec_loopback_self_test(_radio_perifs[1].ctrl);
_codec_ctrl->data_port_loopback(false);
////////////////////////////////////////////////////////////////////
// internal gpios
////////////////////////////////////////////////////////////////////
gpio_core_200::sptr fp_gpio = gpio_core_200::make(_radio_perifs[0].ctrl, TOREG(SR_FP_GPIO), RB32_FP_GPIO);
const std::vector gpio_attrs = boost::assign::list_of("CTRL")("DDR")("OUT")("ATR_0X")("ATR_RX")("ATR_TX")("ATR_XX");
BOOST_FOREACH(const std::string &attr, gpio_attrs)
{
_tree->create(mb_path / "gpio" / "INT0" / attr)
.subscribe(boost::bind(&e300_impl::_set_internal_gpio, this, fp_gpio, attr, _1))
.set(0);
}
_tree->create(mb_path / "gpio" / "INT0" / "READBACK")
.publish(boost::bind(&e300_impl::_get_internal_gpio, this, fp_gpio, "READBACK"));
////////////////////////////////////////////////////////////////////
// register the time keepers - only one can be the highlander
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "time" / "now")
.publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64))
.subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[0].time64, _1))
.subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[1].time64, _1));
_tree->create(mb_path / "time" / "pps")
.publish(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64))
.subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[0].time64, _1))
.subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[1].time64, _1));
//setup time source props
_tree->create(mb_path / "time_source" / "value")
.subscribe(boost::bind(&e300_impl::_update_time_source, this, _1))
.set(e300::DEFAULT_TIME_SRC);
static const std::vector time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo");
_tree->create >(mb_path / "time_source" / "options").set(time_sources);
//setup reference source props
_tree->create(mb_path / "clock_source" / "value")
.subscribe(boost::bind(&e300_impl::_update_clock_source, this, _1))
.set(e300::DEFAULT_CLOCK_SRC);
static const std::vector clock_sources = boost::assign::list_of("internal"); //external,gpsdo not supported
_tree->create >(mb_path / "clock_source" / "options").set(clock_sources);
////////////////////////////////////////////////////////////////////
// dboard eeproms but not really
////////////////////////////////////////////////////////////////////
dboard_eeprom_t db_eeprom;
_tree->create(mb_path / "dboards" / "A" / "rx_eeprom")
.set(_eeprom_manager->get_db_eeprom())
.subscribe(boost::bind(
&e300_eeprom_manager::write_db_eeprom,
_eeprom_manager, _1));
_tree->create(mb_path / "dboards" / "A" / "tx_eeprom")
.set(_eeprom_manager->get_db_eeprom())
.subscribe(boost::bind(
&e300_eeprom_manager::write_db_eeprom,
_eeprom_manager, _1));
_tree->create(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom);
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
{
const fs_path codec_path = mb_path / ("rx_codecs") / "A";
_tree->create(codec_path / "name").set("E3x0 RX dual ADC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
{
const fs_path codec_path = mb_path / ("tx_codecs") / "A";
_tree->create(codec_path / "name").set("E3x0 TX dual DAC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
////////////////////////////////////////////////////////////////////
// create frontend mapping
////////////////////////////////////////////////////////////////////
std::vector default_map(2, 0);
default_map[0] = 0; // set A->0
default_map[1] = 1; // set B->1, even if there's only A
_tree->create >(mb_path / "rx_chan_dsp_mapping").set(default_map);
_tree->create >(mb_path / "tx_chan_dsp_mapping").set(default_map);
_tree->create(mb_path / "rx_subdev_spec")
.set(subdev_spec_t())
.subscribe(boost::bind(&e300_impl::_update_subdev_spec, this, "rx", _1));
_tree->create(mb_path / "tx_subdev_spec")
.set(subdev_spec_t())
.subscribe(boost::bind(&e300_impl::_update_subdev_spec, this, "tx", _1));
////////////////////////////////////////////////////////////////////
// do some post-init tasks
////////////////////////////////////////////////////////////////////
// init the clock rate to something reasonable
_tree->access(mb_path / "tick_rate").set(
device_addr.cast("master_clock_rate", e300::DEFAULT_TICK_RATE));
// subdev spec contains full width of selections
subdev_spec_t rx_spec, tx_spec;
BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends"))
{
rx_spec.push_back(subdev_spec_pair_t("A", fe));
}
BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends"))
{
tx_spec.push_back(subdev_spec_pair_t("A", fe));
}
_tree->access(mb_path / "rx_subdev_spec").set(rx_spec);
_tree->access(mb_path / "tx_subdev_spec").set(tx_spec);
}
boost::uint8_t e300_impl::_get_internal_gpio(
gpio_core_200::sptr gpio,
const std::string &)
{
return boost::uint32_t(gpio->read_gpio(dboard_iface::UNIT_RX));
}
void e300_impl::_set_internal_gpio(
gpio_core_200::sptr gpio,
const std::string &attr,
const boost::uint32_t value)
{
if (attr == "CTRL")
return gpio->set_pin_ctrl(dboard_iface::UNIT_RX, value);
else if (attr == "DDR")
return gpio->set_gpio_ddr(dboard_iface::UNIT_RX, value);
else if (attr == "OUT")
return gpio->set_gpio_out(dboard_iface::UNIT_RX, value);
else if (attr == "ATR_0X")
return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, value);
else if (attr == "ATR_RX")
return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, value);
else if (attr == "ATR_TX")
return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, value);
else if (attr == "ATR_XX")
return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, value);
}
uhd::sensor_value_t e300_impl::_get_fe_pll_lock(const bool is_tx)
{
const boost::uint32_t st =
_global_regs->peek32(global_regs::RB32_CORE_PLL);
const bool locked = is_tx ? st & 0x1 : st & 0x2;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
e300_impl::~e300_impl(void)
{
/* NOP */
}
void e300_impl::_enforce_tick_rate_limits(
const size_t chan_count,
const double tick_rate,
const std::string &direction)
{
const size_t max_chans = 2;
if (chan_count > max_chans) {
throw uhd::value_error(boost::str(
boost::format("cannot not setup %d %s channels (maximum is %d)")
% chan_count
% direction
% max_chans
));
} else {
const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
if (tick_rate - max_tick_rate >= 1.0)
{
throw uhd::value_error(boost::str(
boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d %s channels")
% (tick_rate/1e6)
% (max_tick_rate/1e6)
% chan_count
% direction
));
}
}
}
double e300_impl::_set_tick_rate(const double rate)
{
UHD_MSG(status) << "Asking for clock rate " << rate/1e6 << " MHz\n";
_tick_rate = _codec_ctrl->set_clock_rate(rate);
UHD_MSG(status) << "Actually got clock rate " << _tick_rate/1e6 << " MHz\n";
BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs)
{
perif.time64->set_tick_rate(_tick_rate);
perif.time64->self_test();
}
return _tick_rate;
}
void e300_impl::_register_loopback_self_test(wb_iface::sptr iface)
{
bool test_fail = false;
UHD_MSG(status) << "Performing register loopback test... " << std::flush;
size_t hash = time(NULL);
for (size_t i = 0; i < 100; i++)
{
boost::hash_combine(hash, i);
iface->poke32(TOREG(SR_TEST), boost::uint32_t(hash));
test_fail = iface->peek32(RB32_TEST) != boost::uint32_t(hash);
if (test_fail) break; //exit loop on any failure
}
UHD_MSG(status) << ((test_fail)? " fail" : "pass") << std::endl;
}
boost::uint32_t e300_impl::_get_version(compat_t which)
{
const boost::uint16_t compat_num
= _global_regs->peek32(global_regs::RB32_CORE_COMPAT);
switch(which) {
case FPGA_MINOR:
return compat_num & 0xff;
case FPGA_MAJOR:
return (compat_num & 0xff00) >> 8;
default:
throw uhd::value_error("Requested unknown version.");
};
}
std::string e300_impl::_get_version_hash(void)
{
const boost::uint32_t git_hash
= _global_regs->peek32(global_regs::RB32_CORE_GITHASH);
return str(boost::format("%7x%s")
% (git_hash & 0x0FFFFFFF)
% ((git_hash & 0xF000000) ? "-dirty" : ""));
}
void e300_impl::_codec_loopback_self_test(wb_iface::sptr iface)
{
bool test_fail = false;
UHD_ASSERT_THROW(bool(iface));
UHD_MSG(status) << "Performing CODEC loopback test... " << std::flush;
size_t hash = time(NULL);
for (size_t i = 0; i < 100; i++)
{
boost::hash_combine(hash, i);
const boost::uint32_t word32 = boost::uint32_t(hash) & 0xfff0fff0;
iface->poke32(TOREG(SR_CODEC_IDLE), word32);
iface->peek64(RB64_CODEC_READBACK); //enough idleness for loopback to propagate
const boost::uint64_t rb_word64 = iface->peek64(RB64_CODEC_READBACK);
const boost::uint32_t rb_tx = boost::uint32_t(rb_word64 >> 32);
const boost::uint32_t rb_rx = boost::uint32_t(rb_word64 & 0xffffffff);
test_fail = word32 != rb_tx or word32 != rb_rx;
if (test_fail) break; //exit loop on any failure
}
UHD_MSG(status) << ((test_fail)? " fail" : "pass") << std::endl;
/* Zero out the idle data. */
iface->poke32(TOREG(SR_CODEC_IDLE), 0);
}
boost::uint32_t e300_impl::_allocate_sid(const sid_config_t &config)
{
const boost::uint32_t stream = (config.dst_prefix | (config.router_dst_there << 2)) & 0xff;
const boost::uint32_t sid = 0
| (E300_DEVICE_HERE << 24)
| (_sid_framer << 16)
| (config.router_addr_there << 8)
| (stream << 0)
;
UHD_LOG << std::hex
<< " sid 0x" << sid
<< " framer 0x" << _sid_framer
<< " stream 0x" << stream
<< " router_dst_there 0x" << int(config.router_dst_there)
<< " router_addr_there 0x" << int(config.router_addr_there)
<< std::dec << std::endl;
// Program the E300 to recognize it's own local address.
_global_regs->poke32(global_regs::SR_CORE_XB_LOCAL, config.router_addr_there);
// Program CAM entry for outgoing packets matching a E300 resource (e.g. Radio).
// This type of packet matches the XB_LOCAL address and is looked up in the upper
// half of the CAM
_global_regs->poke32(XB_ADDR(256 + stream),
config.router_dst_there);
// Program CAM entry for returning packets to us (for example GR host via zynq_fifo)
// This type of packet does not match the XB_LOCAL address and is looked up in the lower half of the CAM
_global_regs->poke32(XB_ADDR(E300_DEVICE_HERE),
config.router_dst_here);
UHD_LOG << std::hex
<< "done router config for sid 0x" << sid
<< std::dec << std::endl;
//increment for next setup
_sid_framer++;
return sid;
}
void e300_impl::_setup_dest_mapping(const boost::uint32_t sid, const size_t which_stream)
{
UHD_LOG << boost::format("Setting up dest map for 0x%lx to be stream %d")
% (sid & 0xff) % which_stream << std::endl;
_global_regs->poke32(DST_ADDR(sid & 0xff), which_stream);
}
void e300_impl::_update_time_source(const std::string &source)
{
UHD_MSG(status) << boost::format("Setting time source to %s") % source << std::endl;
if (source == "none" or source == "internal") {
_misc.pps_sel = global_regs::PPS_INT;
} else if (source == "gpsdo") {
_misc.pps_sel = global_regs::PPS_GPS;
} else if (source == "external") {
_misc.pps_sel = global_regs::PPS_EXT;
} else {
throw uhd::key_error("update_time_source: unknown source: " + source);
}
_update_gpio_state();
}
size_t e300_impl::_get_axi_dma_channel(
boost::uint8_t destination,
boost::uint8_t prefix)
{
static const boost::uint32_t RADIO_GRP_SIZE = 4;
static const boost::uint32_t RADIO0_GRP = 0;
static const boost::uint32_t RADIO1_GRP = 1;
boost::uint32_t radio_grp = (destination == E300_XB_DST_R0) ? RADIO0_GRP : RADIO1_GRP;
return ((radio_grp * RADIO_GRP_SIZE) + prefix);
}
boost::uint16_t e300_impl::_get_udp_port(
boost::uint8_t destination,
boost::uint8_t prefix)
{
if (destination == E300_XB_DST_R0) {
if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
return boost::lexical_cast(E300_SERVER_CTRL_PORT0);
else if (prefix == E300_RADIO_DEST_PREFIX_TX)
return boost::lexical_cast(E300_SERVER_TX_PORT0);
else if (prefix == E300_RADIO_DEST_PREFIX_RX)
return boost::lexical_cast(E300_SERVER_RX_PORT0);
} else if (destination == E300_XB_DST_R1) {
if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
return boost::lexical_cast(E300_SERVER_CTRL_PORT1);
else if (prefix == E300_RADIO_DEST_PREFIX_TX)
return boost::lexical_cast(E300_SERVER_TX_PORT1);
else if (prefix == E300_RADIO_DEST_PREFIX_RX)
return boost::lexical_cast(E300_SERVER_RX_PORT1);
}
throw uhd::value_error(str(boost::format("No UDP port defined for combination: %u %u") % destination % prefix));
}
e300_impl::both_xports_t e300_impl::_make_transport(
const boost::uint8_t &destination,
const boost::uint8_t &prefix,
const uhd::transport::zero_copy_xport_params ¶ms,
boost::uint32_t &sid)
{
both_xports_t xports;
sid_config_t config;
config.router_addr_there = E300_DEVICE_THERE;
config.dst_prefix = prefix;
config.router_dst_there = destination;
config.router_dst_here = E300_XB_DST_AXI;
sid = this->_allocate_sid(config);
// in local mode
if (_xport_path == AXI) {
// lookup which dma channel we need
// to use to create our transport
const size_t stream = _get_axi_dma_channel(
destination,
prefix);
xports.send =
_fifo_iface->make_send_xport(stream, params);
xports.recv =
_fifo_iface->make_recv_xport(stream, params);
// in network mode
} else if (_xport_path == ETH) {
// lookup which udp port we need
// to use to create our transport
const boost::uint16_t port = _get_udp_port(
destination,
prefix);
udp_zero_copy::buff_params dummy_buff_params_out;
xports.send = udp_zero_copy::make(
_device_addr["addr"],
str(boost::format("%u") % port), params,
dummy_buff_params_out,
_device_addr);
// use the same xport in both directions
xports.recv = xports.send;
}
// configure the return path
_setup_dest_mapping(sid, _get_axi_dma_channel(destination, prefix));
return xports;
}
void e300_impl::_update_clock_source(const std::string &source)
{
if (source != "internal") {
throw uhd::value_error(boost::str(
boost::format("Clock source option not supported: %s. The only value supported is \"internal\". " \
"To discipline the internal oscillator, set the appropriate time source.") % source
));
}
}
void e300_impl::_update_antenna_sel(const size_t &which, const std::string &ant)
{
if (ant != "TX/RX" and ant != "RX2")
throw uhd::value_error("Unknown RX antenna option: " + ant);
_radio_perifs[which].ant_rx2 = (ant == "RX2");
this->_update_atrs();
}
void e300_impl::_update_fe_lo_freq(const std::string &fe, const double freq)
{
if (fe[0] == 'R')
_settings.rx_freq = freq;
if (fe[0] == 'T')
_settings.tx_freq = freq;
this->_update_atrs();
_update_bandsel(fe, freq);
}
void e300_impl::_setup_radio(const size_t dspno)
{
radio_perifs_t &perif = _radio_perifs[dspno];
const fs_path mb_path = "/mboards/0";
////////////////////////////////////////////////////////////////////
// crossbar config for ctrl xports
////////////////////////////////////////////////////////////////////
// make a transport, grab a sid
boost::uint32_t ctrl_sid;
both_xports_t ctrl_xports = _make_transport(
dspno ? E300_XB_DST_R1 : E300_XB_DST_R0,
E300_RADIO_DEST_PREFIX_CTRL,
_ctrl_xport_params,
ctrl_sid);
this->_setup_dest_mapping(
ctrl_sid,
dspno ? E300_R1_CTRL_STREAM
: E300_R0_CTRL_STREAM);
////////////////////////////////////////////////////////////////////
// radio control
////////////////////////////////////////////////////////////////////
perif.ctrl = radio_ctrl_core_3000::make(
false/*lilE*/,
ctrl_xports.send,
ctrl_xports.recv,
ctrl_sid,
dspno ? "1" : "0");
this->_register_loopback_self_test(perif.ctrl);
perif.atr = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_GPIO));
////////////////////////////////////////////////////////////////////
// front end corrections
////////////////////////////////////////////////////////////////////
std::string slot_name = (dspno == 0) ? "A" : "B";
perif.rx_fe = rx_frontend_core_200::make(perif.ctrl, TOREG(SR_RX_FRONT));
const fs_path rx_fe_path = mb_path / "rx_frontends" / slot_name;
_tree->create >(rx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&rx_frontend_core_200::set_dc_offset, perif.rx_fe, _1))
.set(std::complex(0.0, 0.0));
_tree->create(rx_fe_path / "dc_offset" / "enable")
.subscribe(boost::bind(&rx_frontend_core_200::set_dc_offset_auto, perif.rx_fe, _1))
.set(true);
_tree->create >(rx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&rx_frontend_core_200::set_iq_balance, perif.rx_fe, _1))
.set(std::complex(0.0, 0.0));
perif.tx_fe = tx_frontend_core_200::make(perif.ctrl, TOREG(SR_TX_FRONT));
const fs_path tx_fe_path = mb_path / "tx_frontends" / slot_name;
_tree->create >(tx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&tx_frontend_core_200::set_dc_offset, perif.tx_fe, _1))
.set(std::complex(0.0, 0.0));
_tree->create >(tx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&tx_frontend_core_200::set_iq_balance, perif.tx_fe, _1))
.set(std::complex(0.0, 0.0));
////////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////////
perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL));
perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP));
perif.ddc->set_link_rate(10e9/8); //whatever
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1))
.subscribe(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1));
const fs_path rx_dsp_path = mb_path / "rx_dsps" / str(boost::format("%u") % dspno);
_tree->create(rx_dsp_path / "rate" / "range")
.publish(boost::bind(&rx_dsp_core_3000::get_host_rates, perif.ddc));
_tree->create(rx_dsp_path / "rate" / "value")
.coerce(boost::bind(&rx_dsp_core_3000::set_host_rate, perif.ddc, _1))
.subscribe(boost::bind(&e300_impl::_update_rx_samp_rate, this, dspno, _1))
.set(e300::DEFAULT_RX_SAMP_RATE);
_tree->create(rx_dsp_path / "freq" / "value")
.coerce(boost::bind(&rx_dsp_core_3000::set_freq, perif.ddc, _1))
.set(e300::DEFAULT_DDC_FREQ);
_tree->create(rx_dsp_path / "freq" / "range")
.publish(boost::bind(&rx_dsp_core_3000::get_freq_range, perif.ddc));
_tree->create(rx_dsp_path / "stream_cmd")
.subscribe(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1));
////////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////////
perif.deframer = tx_vita_core_3000::make(perif.ctrl, TOREG(SR_TX_CTRL));
perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP));
perif.duc->set_link_rate(10e9/8); //whatever
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&tx_vita_core_3000::set_tick_rate, perif.deframer, _1))
.subscribe(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1));
const fs_path tx_dsp_path = mb_path / "tx_dsps" / str(boost::format("%u") % dspno);
_tree->create(tx_dsp_path / "rate" / "range")
.publish(boost::bind(&tx_dsp_core_3000::get_host_rates, perif.duc));
_tree->create(tx_dsp_path / "rate" / "value")
.coerce(boost::bind(&tx_dsp_core_3000::set_host_rate, perif.duc, _1))
.subscribe(boost::bind(&e300_impl::_update_tx_samp_rate, this, dspno, _1))
.set(e300::DEFAULT_TX_SAMP_RATE);
_tree->create(tx_dsp_path / "freq" / "value")
.coerce(boost::bind(&tx_dsp_core_3000::set_freq, perif.duc, _1))
.set(e300::DEFAULT_DUC_FREQ);
_tree->create(tx_dsp_path / "freq" / "range")
.publish(boost::bind(&tx_dsp_core_3000::get_freq_range, perif.duc));
////////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////////
time_core_3000::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_now = RB64_TIME_NOW;
time64_rb_bases.rb_pps = RB64_TIME_PPS;
perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases);
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
static const std::vector data_directions = boost::assign::list_of("rx")("tx");
BOOST_FOREACH(const std::string& direction, data_directions)
{
const std::string key = boost::to_upper_copy(direction) + std::string(((dspno == FE0)? "1" : "2"));
const fs_path rf_fe_path
= mb_path / "dboards" / "A" / (direction + "_frontends") / ((dspno == 0) ? "A" : "B");
_tree->create(rf_fe_path / "name").set("FE-"+key);
_tree->create(rf_fe_path / "sensors"); //empty TODO
_tree->create(rf_fe_path / "sensors" / "lo_locked")
.publish(boost::bind(&e300_impl::_get_fe_pll_lock, this, direction == "tx"));
BOOST_FOREACH(const std::string &name, ad9361_ctrl::get_gain_names(key))
{
_tree->create(rf_fe_path / "gains" / name / "range")
.set(ad9361_ctrl::get_gain_range(key));
_tree->create(rf_fe_path / "gains" / name / "value")
.coerce(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1))
.set(e300::DEFAULT_FE_GAIN);
}
_tree->create(rf_fe_path / "connection").set("IQ");
_tree->create(rf_fe_path / "enabled").set(true);
_tree->create(rf_fe_path / "use_lo_offset").set(false);
_tree->create(rf_fe_path / "bandwidth" / "value")
.coerce(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1))
.set(e300::DEFAULT_FE_BW);
_tree->create(rf_fe_path / "bandwidth" / "range")
.publish(boost::bind(&ad9361_ctrl::get_bw_filter_range, key));
_tree->create(rf_fe_path / "freq" / "value")
.coerce(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1))
.subscribe(boost::bind(&e300_impl::_update_fe_lo_freq, this, key, _1))
.set(e300::DEFAULT_FE_FREQ);
_tree->create(rf_fe_path / "freq" / "range")
.publish(boost::bind(&ad9361_ctrl::get_rf_freq_range));
//setup RX related stuff
if (key[0] == 'R') {
static const std::vector ants = boost::assign::list_of("TX/RX")("RX2");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value")
.subscribe(boost::bind(&e300_impl::_update_antenna_sel, this, dspno, _1))
.set("RX2");
_tree->create(rf_fe_path / "sensors" / "rssi")
.publish(boost::bind(&ad9361_ctrl::get_rssi, _codec_ctrl, key));
}
if (key[0] == 'T') {
static const std::vector ants(1, "TX/RX");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value").set("TX/RX");
}
}
}
void e300_impl::_update_enables(void)
{
//extract settings from state variables
const bool enb_tx1 = bool(_radio_perifs[FE0].tx_streamer.lock());
const bool enb_rx1 = bool(_radio_perifs[FE0].rx_streamer.lock());
const bool enb_tx2 = bool(_radio_perifs[FE1].tx_streamer.lock());
const bool enb_rx2 = bool(_radio_perifs[FE1].rx_streamer.lock());
const size_t num_rx = (enb_rx1 ? 1 : 0) + (enb_rx2 ? 1:0);
const size_t num_tx = (enb_tx1 ? 1 : 0) + (enb_tx2 ? 1:0);
const bool mimo = num_rx == 2 or num_tx == 2;
//setup the active chains in the codec
_codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2);
if ((num_rx + num_tx) == 0)
_codec_ctrl->set_active_chains(
true, false, true, false); // enable something
//set_active_chains could cause a clock rate change - reset dcm
_reset_codec_mmcm();
//figure out if mimo is enabled based on new state
_misc.mimo = (mimo)? 1 : 0;
_update_gpio_state();
//atrs change based on enables
_update_atrs();
}
void e300_impl::_update_gpio_state(void)
{
boost::uint32_t misc_reg = 0
| (_misc.pps_sel << gpio_t::PPS_SEL)
| (_misc.mimo << gpio_t::MIMO)
| (_misc.codec_arst << gpio_t::CODEC_ARST)
| (_misc.tx_bandsels << gpio_t::TX_BANDSEL)
| (_misc.rx_bandsel_a << gpio_t::RX_BANDSELA)
| (_misc.rx_bandsel_b << gpio_t::RX_BANDSELB)
| (_misc.rx_bandsel_c << gpio_t::RX_BANDSELC);
_global_regs->poke32(global_regs::SR_CORE_MISC, misc_reg);
}
void e300_impl::_reset_codec_mmcm(void)
{
_misc.codec_arst = 1;
_update_gpio_state();
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
_misc.codec_arst = 0;
_update_gpio_state();
}
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//////////////// ATR SETUP FOR FRONTEND CONTROL VIA GPIO ///////////////
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
void e300_impl::_update_bandsel(const std::string& which, double freq)
{
if(which[0] == 'R') {
if (freq < 450e6) {
_misc.rx_bandsel_a = 44; // 4 | (5 << 3)
_misc.rx_bandsel_b = 0; // 0 | (0 << 2)
_misc.rx_bandsel_c = 6; // 2 | (1 << 2)
} else if (freq < 700e6) {
_misc.rx_bandsel_a = 26; // 2 | (3 << 3)
_misc.rx_bandsel_b = 0; // 0 | (0 << 2)
_misc.rx_bandsel_c = 15; // 3 | (3 << 2)
} else if (freq < 1200e6) {
_misc.rx_bandsel_a = 8; // 0 | (1 << 3)
_misc.rx_bandsel_b = 0; // 0 | (0 << 2)
_misc.rx_bandsel_c = 9; // 1 | (2 << 2)
} else if (freq < 1800e6) {
_misc.rx_bandsel_a = 1; // 1 | (0 << 3)
_misc.rx_bandsel_b = 6; // 2 | (1 << 2)
_misc.rx_bandsel_c = 0; // 0 | (0 << 2)
} else if (freq < 2350e6){
_misc.rx_bandsel_a = 19; // 3 | (2 << 3)
_misc.rx_bandsel_b = 15; // 3 | (3 << 2)
_misc.rx_bandsel_c = 0; // 0 | (0 << 2)
} else if (freq < 2600e6){
_misc.rx_bandsel_a = 37; // 5 | (4 << 3)
_misc.rx_bandsel_b = 9; // 1 | (2 << 2)
_misc.rx_bandsel_c = 0; // 0 | (0 << 2)
} else {
_misc.rx_bandsel_a = 0;
_misc.rx_bandsel_b = 0;
_misc.rx_bandsel_c = 0;
}
_update_gpio_state();
} else if(which[0] == 'T') {
if (freq < 117.7e6)
_misc.tx_bandsels = 7;
else if (freq < 178.2e6)
_misc.tx_bandsels = 6;
else if (freq < 284.3e6)
_misc.tx_bandsels = 5;
else if (freq < 453.7e6)
_misc.tx_bandsels = 4;
else if (freq < 723.8e6)
_misc.tx_bandsels = 3;
else if (freq < 1154.9e6)
_misc.tx_bandsels = 2;
else if (freq < 1842.6e6)
_misc.tx_bandsels = 1;
else if (freq < 2940.0e6)
_misc.tx_bandsels = 0;
else
_misc.tx_bandsels = 7;
_update_gpio_state();
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
void e300_impl::_update_atrs(void)
{
for (size_t instance = 0; instance < fpga::NUM_RADIOS; instance++)
{
// if we're not ready, no point ...
if (not _radio_perifs[instance].atr)
return;
radio_perifs_t &perif = _radio_perifs[instance];
const bool enb_rx = bool(perif.rx_streamer.lock());
const bool enb_tx = bool(perif.tx_streamer.lock());
const bool rx_ant_rx2 = perif.ant_rx2;
const bool rx_low_band = _settings.rx_freq < 2.6e9;
const bool tx_low_band = _settings.tx_freq < 2940.0e6;
// VCRX
int vcrx_v1_rxing = 1;
int vcrx_v2_rxing = 0;
int vcrx_v1_txing = 1;
int vcrx_v2_txing = 0;
if (rx_low_band) {
vcrx_v1_rxing = rx_ant_rx2 ? 0 : 1;
vcrx_v2_rxing = rx_ant_rx2 ? 1 : 0;
vcrx_v1_txing = 0;
vcrx_v2_txing = 1;
} else {
vcrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vcrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vcrx_v1_txing = 1;
vcrx_v2_txing = 0;
}
// VCTX
int vctxrx_v1_rxing = 0;
int vctxrx_v2_rxing = 1;
int vctxrx_v1_txing = 0;
int vctxrx_v2_txing = 1;
if (tx_low_band) {
vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vctxrx_v1_txing = 1;
vctxrx_v2_txing = 0;
} else {
vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
vctxrx_v1_txing = 1;
vctxrx_v2_txing = 1;
}
//swapped for routing reasons, reswap it here
if (instance == 1) {
std::swap(vctxrx_v1_rxing, vctxrx_v2_rxing);
std::swap(vctxrx_v1_txing, vctxrx_v2_txing);
}
int tx_enable_a = (!tx_low_band and enb_tx) ? 1 : 0;
int tx_enable_b = (tx_low_band and enb_tx) ? 1 : 0;
//----------------- LEDS ----------------------------//
const int led_rx2 = rx_ant_rx2 ? 1 : 0;
const int led_txrx = !rx_ant_rx2 ? 1 : 0;
const int led_tx = 1;
const int rx_leds = (led_rx2 << LED_RX_RX) | (led_txrx << LED_TXRX_RX);
const int tx_leds = (led_tx << LED_TXRX_TX);
const int xx_leds = tx_leds | (1 << LED_RX_RX); //forced to rx2
const int rx_selects = 0
| (vcrx_v1_rxing << VCRX_V1)
| (vcrx_v2_rxing << VCRX_V2)
| (vctxrx_v1_rxing << VCTXRX_V1)
| (vctxrx_v2_rxing << VCTXRX_V2)
;
const int tx_selects = 0
| (vcrx_v1_txing << VCRX_V1)
| (vcrx_v2_txing << VCRX_V2)
| (vctxrx_v1_txing << VCTXRX_V1)
| (vctxrx_v2_txing << VCTXRX_V2)
;
const int tx_enables = 0
| (tx_enable_a << TX_ENABLEA)
| (tx_enable_b << TX_ENABLEB)
;
//default selects
int oo_reg = rx_selects;
int rx_reg = rx_selects;
int tx_reg = tx_selects;
int fd_reg = tx_selects; //tx selects dominate in fd mode
//add in leds and tx enables based on fe enable
if (enb_rx)
rx_reg |= rx_leds;
if (enb_rx)
fd_reg |= xx_leds;
if (enb_tx)
tx_reg |= tx_enables | tx_leds;
if (enb_tx)
fd_reg |= tx_enables | xx_leds;
gpio_core_200_32wo::sptr atr = _radio_perifs[instance].atr;
atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, oo_reg);
atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rx_reg);
atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, tx_reg);
atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd_reg);
}
}
}}} // namespace
UHD_STATIC_BLOCK(register_e300_device)
{
device::register_device(&uhd::usrp::e300::e300_find, &uhd::usrp::e300::e300_make, uhd::device::USRP);
}