//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "e100_iface.hpp"
#include "e100_regs.hpp"
#include
#include
#include //ioctl
#include //open, close
#include //ioctl structures and constants
#include //sleep
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
/***********************************************************************
* Sysfs GPIO wrapper class
**********************************************************************/
class gpio{
public:
gpio(const int num, const std::string &dir) : _num(num){
this->set_xport("export");
this->set_dir(dir);
_value_file.open(str(boost::format("/sys/class/gpio/gpio%d/value") % num).c_str(), std::ios_base::in | std::ios_base::out);
}
~gpio(void){
_value_file.close();
this->set_dir("in");
this->set_xport("unexport");
}
void operator()(const int val){
_value_file << val << std::endl << std::flush;
}
int operator()(void){
std::string val;
std::getline(_value_file, val);
_value_file.seekg(0);
return int(val.at(0) - '0') & 0x1;
}
private:
void set_xport(const std::string &xport){
std::ofstream export_file(("/sys/class/gpio/" + xport).c_str());
export_file << _num << std::endl << std::flush;
export_file.close();
}
void set_dir(const std::string &dir){
std::ofstream dir_file(str(boost::format("/sys/class/gpio/gpio%d/direction") % _num).c_str());
dir_file << dir << std::endl << std::flush;
dir_file.close();
}
const int _num;
std::fstream _value_file;
};
//We only init the gpios when we have to use them (in the aux spi call).
//This way, the device discovery cannot unexport them from another process.
struct iface_gpios_type{
typedef boost::shared_ptr sptr;
iface_gpios_type(void):
spi_sclk_gpio(65, "out"),
spi_sen_gpio(186, "out"),
spi_mosi_gpio(145, "out"),
spi_miso_gpio(147, "in"){}
gpio spi_sclk_gpio, spi_sen_gpio, spi_mosi_gpio, spi_miso_gpio;
};
/***********************************************************************
* I2C device node implementation wrapper
**********************************************************************/
class i2c_dev_iface : public i2c_iface{
public:
i2c_dev_iface(const std::string &node){
if ((_node_fd = ::open(node.c_str(), O_RDWR)) < 0){
throw uhd::io_error("Failed to open " + node);
}
}
~i2c_dev_iface(void){
::close(_node_fd);
}
void write_i2c(boost::uint8_t addr, const byte_vector_t &bytes){
byte_vector_t rw_bytes(bytes);
//setup the message
i2c_msg msg;
msg.addr = addr;
msg.flags = 0;
msg.len = bytes.size();
msg.buf = &rw_bytes.front();
//setup the data
i2c_rdwr_ioctl_data data;
data.msgs = &msg;
data.nmsgs = 1;
//call the ioctl
UHD_ASSERT_THROW(::ioctl(_node_fd, I2C_RDWR, &data) >= 0);
}
byte_vector_t read_i2c(boost::uint8_t addr, size_t num_bytes){
byte_vector_t bytes(num_bytes);
//setup the message
i2c_msg msg;
msg.addr = addr;
msg.flags = I2C_M_RD;
msg.len = bytes.size();
msg.buf = &bytes.front();
//setup the data
i2c_rdwr_ioctl_data data;
data.msgs = &msg;
data.nmsgs = 1;
//call the ioctl
UHD_ASSERT_THROW(::ioctl(_node_fd, I2C_RDWR, &data) >= 0);
return bytes;
}
private: int _node_fd;
};
/***********************************************************************
* USRP-E100 interface implementation
**********************************************************************/
class e100_iface_impl : public e100_iface{
public:
int get_file_descriptor(void){
return _node_fd;
}
void open(const std::string &node){
UHD_MSG(status) << "Opening device node " << node << "..." << std::endl;
//open the device node and check file descriptor
if ((_node_fd = ::open(node.c_str(), O_RDWR)) < 0){
throw uhd::io_error("Failed to open " + node);
}
//check the module compatibility number
int module_compat_num = ::ioctl(_node_fd, USRP_E_GET_COMPAT_NUMBER, NULL);
if (module_compat_num != USRP_E_COMPAT_NUMBER){
throw uhd::runtime_error(str(boost::format(
"Expected module compatibility number 0x%x, but got 0x%x:\n"
"The module build is not compatible with the host code build."
) % USRP_E_COMPAT_NUMBER % module_compat_num));
}
}
void close(void){
::close(_node_fd);
_node_fd = -1;
}
/*******************************************************************
* Structors
******************************************************************/
e100_iface_impl(void):
_node_fd(-1),
_i2c_dev_iface(i2c_dev_iface("/dev/i2c-3"))
{
mb_eeprom = mboard_eeprom_t(get_i2c_dev_iface(), mboard_eeprom_t::MAP_E100);
}
~e100_iface_impl(void){
if (_node_fd >= 0) this->close();
}
/*******************************************************************
* IOCTL: provides the communication base for all other calls
******************************************************************/
void ioctl(int request, void *mem){
boost::mutex::scoped_lock lock(_ctrl_mutex);
if (::ioctl(_node_fd, request, mem) < 0){
throw uhd::os_error(str(
boost::format("ioctl failed with request %d") % request
));
}
}
/*******************************************************************
* I2C device node interface
******************************************************************/
i2c_iface &get_i2c_dev_iface(void){
return _i2c_dev_iface;
}
/*******************************************************************
* Peek and Poke
******************************************************************/
void poke32(boost::uint32_t addr, boost::uint32_t value){
//load the data struct
usrp_e_ctl32 data;
data.offset = addr;
data.count = 1;
data.buf[0] = value;
//call the ioctl
this->ioctl(USRP_E_WRITE_CTL32, &data);
}
void poke16(boost::uint32_t addr, boost::uint16_t value){
//load the data struct
usrp_e_ctl16 data;
data.offset = addr;
data.count = 1;
data.buf[0] = value;
//call the ioctl
this->ioctl(USRP_E_WRITE_CTL16, &data);
}
boost::uint32_t peek32(boost::uint32_t addr){
//load the data struct
usrp_e_ctl32 data;
data.offset = addr;
data.count = 1;
//call the ioctl
this->ioctl(USRP_E_READ_CTL32, &data);
return data.buf[0];
}
boost::uint16_t peek16(boost::uint32_t addr){
//load the data struct
usrp_e_ctl16 data;
data.offset = addr;
data.count = 1;
//call the ioctl
this->ioctl(USRP_E_READ_CTL16, &data);
return data.buf[0];
}
/*******************************************************************
* I2C
******************************************************************/
static const size_t max_i2c_data_bytes = 10;
void write_i2c(boost::uint8_t addr, const byte_vector_t &bytes){
//allocate some memory for this transaction
UHD_ASSERT_THROW(bytes.size() <= max_i2c_data_bytes);
boost::uint8_t mem[sizeof(usrp_e_i2c) + max_i2c_data_bytes];
//load the data struct
usrp_e_i2c *data = reinterpret_cast(mem);
data->addr = addr;
data->len = bytes.size();
std::copy(bytes.begin(), bytes.end(), data->data);
//call the spi ioctl
this->ioctl(USRP_E_I2C_WRITE, data);
}
byte_vector_t read_i2c(boost::uint8_t addr, size_t num_bytes){
//allocate some memory for this transaction
UHD_ASSERT_THROW(num_bytes <= max_i2c_data_bytes);
boost::uint8_t mem[sizeof(usrp_e_i2c) + max_i2c_data_bytes];
//load the data struct
usrp_e_i2c *data = reinterpret_cast(mem);
data->addr = addr;
data->len = num_bytes;
//call the spi ioctl
this->ioctl(USRP_E_I2C_READ, data);
//unload the data
byte_vector_t bytes(data->len);
UHD_ASSERT_THROW(bytes.size() == num_bytes);
std::copy(data->data, data->data+bytes.size(), bytes.begin());
return bytes;
}
/*******************************************************************
* SPI
******************************************************************/
boost::uint32_t transact_spi(
int which_slave,
const spi_config_t &config,
boost::uint32_t bits,
size_t num_bits,
bool readback
){
if (which_slave == UE_SPI_SS_AD9522) return bitbang_spi(
bits, num_bits, readback
);
//load data struct
usrp_e_spi data;
data.readback = (readback)? UE_SPI_TXRX : UE_SPI_TXONLY;
data.slave = which_slave;
data.length = num_bits;
data.data = bits;
//load the flags
data.flags = 0;
data.flags |= (config.miso_edge == spi_config_t::EDGE_RISE)? UE_SPI_LATCH_RISE : UE_SPI_LATCH_FALL;
data.flags |= (config.mosi_edge == spi_config_t::EDGE_RISE)? UE_SPI_PUSH_FALL : UE_SPI_PUSH_RISE;
//call the spi ioctl
this->ioctl(USRP_E_SPI, &data);
//unload the data
return data.data;
}
boost::uint32_t bitbang_spi(
boost::uint32_t bits, size_t num_bits, bool readback
){
if (_gpios.get() == NULL) { //init on demand...
_gpios = iface_gpios_type::sptr(new iface_gpios_type());
}
boost::uint32_t rb_bits = 0;
_gpios->spi_sen_gpio(0);
for (size_t i = 0; i < num_bits; i++){
_gpios->spi_sclk_gpio(0);
_gpios->spi_mosi_gpio((bits >> (num_bits-i-1)) & 0x1);
boost::this_thread::sleep(boost::posix_time::microseconds(10));
if (readback) rb_bits = (rb_bits << 1) | _gpios->spi_miso_gpio();
_gpios->spi_sclk_gpio(1);
boost::this_thread::sleep(boost::posix_time::microseconds(10));
}
_gpios->spi_sen_gpio(1);
boost::this_thread::sleep(boost::posix_time::microseconds(100));
return rb_bits;
}
/*******************************************************************
* UART
******************************************************************/
void write_uart(boost::uint8_t, const std::string &) {
throw uhd::not_implemented_error("Unhandled command write_uart()");
}
std::string read_uart(boost::uint8_t) {
throw uhd::not_implemented_error("Unhandled command read_uart()");
}
private:
int _node_fd;
i2c_dev_iface _i2c_dev_iface;
boost::mutex _ctrl_mutex;
iface_gpios_type::sptr _gpios;
};
/***********************************************************************
* Public Make Function
**********************************************************************/
e100_iface::sptr e100_iface::make(void){
return sptr(new e100_iface_impl());
}