// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #ifndef INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP #define INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP #include #include #include #include #include #include #include #include namespace uhd{ namespace usrp{ namespace dsp_type1{ template T ceil_log2(T num){ return std::ceil(std::log(num)/std::log(T(2))); } /*! * Calculate the rx mux word from properties. * \param is_quadrature true if the subdev is complex * \param is_iq_swapped true if the i and q are reversed * \param the 32-bit rx mux control word */ static inline boost::uint32_t calc_rx_mux_word( bool is_quadrature, bool is_iq_swapped ){ boost::uint32_t rx_mux = 0; if (is_quadrature){ rx_mux = (0x01 << 2) | (0x00 << 0); //Q=ADC1, I=ADC0 }else{ rx_mux = (0x11 << 2) | (0x00 << 0); //Q=ZERO, I=ADC0 } if (is_iq_swapped){ rx_mux = (rx_mux << 2) | (rx_mux >> 2); } return rx_mux; } /*! * Calculate the tx mux word from properties. * \param is_iq_swapped true if the i and q are reversed * \param the 32-bit tx mux control word */ static inline boost::uint32_t calc_tx_mux_word(bool is_iq_swapped){ boost::uint32_t tx_mux = 0x10; if (is_iq_swapped){ tx_mux = (tx_mux << 4) | (tx_mux >> 4); } return tx_mux; } /*! * Calculate the cordic word from the frequency and clock rate. * The frequency will be set to the actual (possible) frequency. * * \param freq the requested frequency in Hz * \param codec_rate the dsp codec rate in Hz * \param the 32-bit cordic control word */ static inline boost::uint32_t calc_cordic_word_and_update( double &freq, double codec_rate ){ UHD_ASSERT_THROW(std::abs(freq) < codec_rate/2.0); static const double scale_factor = std::pow(2.0, 32); //calculate the freq register word (signed) boost::int32_t freq_word = boost::math::iround((freq / codec_rate) * scale_factor); //update the actual frequency freq = (double(freq_word) / scale_factor) * codec_rate; return boost::uint32_t(freq_word); } /*! * Calculate the CIC filter word from the rate. * Check if requested decim/interp rate is: * multiple of 4, enable two halfband filters * multiple of 2, enable one halfband filter * handle remainder in CIC * * \param rate the requested rate in Sps * \return the 32-bit cic filter control word */ template static inline boost::uint32_t calc_cic_filter_word(dsp_rate_type rate){ int hb0 = 0, hb1 = 0; if (not (rate & 0x1)){ hb0 = 1; rate /= 2; } if (not (rate & 0x1)){ hb1 = 1; rate /= 2; } return (hb1 << 9) | (hb0 << 8) | (rate & 0xff); } /*! * Calculate the IQ scale factor word from I and Q components. * \param i the I component of the scalar * \param q the Q component of the scalar * \return the 32-bit scale factor control word */ static inline boost::uint32_t calc_iq_scale_word( boost::int16_t i, boost::int16_t q ){ return (boost::uint32_t(i) << 16) | (boost::uint32_t(q) << 0); } /*! * Calculate the IQ scale factor word from the rate. * \param rate the requested rate in Sps * \return the 32-bit scale factor control word */ template static inline boost::uint32_t calc_iq_scale_word(dsp_rate_type rate){ // Calculate CIC interpolation (i.e., without halfband interpolators) dsp_rate_type tmp_rate = calc_cic_filter_word(rate) & 0xff; // Calculate closest multiplier constant to reverse gain absent scale multipliers double rate_cubed = std::pow(double(tmp_rate), 3); boost::int16_t scale = boost::math::iround((4096*std::pow(2, ceil_log2(rate_cubed)))/(1.65*rate_cubed)); return calc_iq_scale_word(scale, scale); } /*! * Calculate the stream command word from the stream command struct. * \param stream_cmd the requested stream command with mode, flags, timestamp * \param num_samps_continuous number of samples to request in continuous mode * \return the 32-bit stream command word */ static inline boost::uint32_t calc_stream_cmd_word( const stream_cmd_t &stream_cmd, size_t num_samps_continuous ){ UHD_ASSERT_THROW(stream_cmd.num_samps <= 0x3fffffff); //setup the mode to instruction flags typedef boost::tuple inst_t; static const uhd::dict mode_to_inst = boost::assign::map_list_of //reload, chain, samps (stream_cmd_t::STREAM_MODE_START_CONTINUOUS, inst_t(true, true, false)) (stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS, inst_t(false, false, false)) (stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE, inst_t(false, false, true)) (stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE, inst_t(false, true, true)) ; //setup the instruction flag values bool inst_reload, inst_chain, inst_samps; boost::tie(inst_reload, inst_chain, inst_samps) = mode_to_inst[stream_cmd.stream_mode]; //calculate the word from flags and length boost::uint32_t word = 0; word |= boost::uint32_t((stream_cmd.stream_now)? 1 : 0) << 31; word |= boost::uint32_t((inst_chain)? 1 : 0) << 30; word |= boost::uint32_t((inst_reload)? 1 : 0) << 29; word |= (inst_samps)? stream_cmd.num_samps : ((inst_chain)? num_samps_continuous : 1); return word; } } //namespace dsp_type1 }} //namespace #endif /* INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP */