//
// Copyright 2016 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "twinrx_experts.hpp"
#include "twinrx_gain_tables.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd::experts;
using namespace uhd::math;
using namespace uhd::usrp::dboard::twinrx;
/*!---------------------------------------------------------
* twinrx_scheduling_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_scheduling_expert::resolve()
{
// Currently a straight pass-through. To be expanded as needed
// when more advanced scheduling is needed
_rx_frontend_time = _command_time;
}
/*!---------------------------------------------------------
* twinrx_freq_path_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_freq_path_expert::resolve()
{
//Lowband/highband switch point
static const double LB_HB_THRESHOLD_FREQ = 1.8e9;
static const double LB_TARGET_IF1_FREQ = 2.345e9;
static const double HB_TARGET_IF1_FREQ = 1.25e9;
static const double INJ_SIDE_THRESHOLD_FREQ = 5.1e9;
static const double FIXED_LO1_THRESHOLD_FREQ= 50e6;
//Preselector filter switch point
static const double LB_FILT1_THRESHOLD_FREQ = 0.5e9;
static const double LB_FILT2_THRESHOLD_FREQ = 0.8e9;
static const double LB_FILT3_THRESHOLD_FREQ = 1.2e9;
static const double LB_FILT4_THRESHOLD_FREQ = 1.8e9;
static const double HB_FILT1_THRESHOLD_FREQ = 3.0e9;
static const double HB_FILT2_THRESHOLD_FREQ = 4.1e9;
static const double HB_FILT3_THRESHOLD_FREQ = 5.1e9;
static const double HB_FILT4_THRESHOLD_FREQ = 6.0e9;
static const double LB_PREAMP_PRESEL_THRESHOLD_FREQ = 0.8e9;
//Misc
static const double INST_BANDWIDTH = 80e6;
static const double MANUAL_LO_HYSTERESIS_PPM = 1.0;
static const freq_range_t FREQ_RANGE(10e6, 6e9);
rf_freq_abs_t rf_freq(FREQ_RANGE.clip(_rf_freq_d));
// Choose low-band vs high-band depending on frequency
_signal_path = (rf_freq > LB_HB_THRESHOLD_FREQ) ?
twinrx_ctrl::PATH_HIGHBAND : twinrx_ctrl::PATH_LOWBAND;
if (_signal_path == twinrx_ctrl::PATH_LOWBAND) {
// Choose low-band preselector filter
if (rf_freq < LB_FILT1_THRESHOLD_FREQ) {
_lb_presel = twinrx_ctrl::PRESEL_PATH1;
} else if (rf_freq < LB_FILT2_THRESHOLD_FREQ) {
_lb_presel = twinrx_ctrl::PRESEL_PATH2;
} else if (rf_freq < LB_FILT3_THRESHOLD_FREQ) {
_lb_presel = twinrx_ctrl::PRESEL_PATH3;
} else if (rf_freq < LB_FILT4_THRESHOLD_FREQ) {
_lb_presel = twinrx_ctrl::PRESEL_PATH4;
} else {
_lb_presel = twinrx_ctrl::PRESEL_PATH4;
}
} else if (_signal_path == twinrx_ctrl::PATH_HIGHBAND) {
// Choose high-band preselector filter
if (rf_freq < HB_FILT1_THRESHOLD_FREQ) {
_hb_presel = twinrx_ctrl::PRESEL_PATH1;
} else if (rf_freq < HB_FILT2_THRESHOLD_FREQ) {
_hb_presel = twinrx_ctrl::PRESEL_PATH2;
} else if (rf_freq < HB_FILT3_THRESHOLD_FREQ) {
_hb_presel = twinrx_ctrl::PRESEL_PATH3;
} else if (rf_freq < HB_FILT4_THRESHOLD_FREQ) {
_hb_presel = twinrx_ctrl::PRESEL_PATH4;
} else {
_hb_presel = twinrx_ctrl::PRESEL_PATH4;
}
} else {
UHD_THROW_INVALID_CODE_PATH();
}
//Choose low-band preamp preselector
_lb_preamp_presel = (rf_freq > LB_PREAMP_PRESEL_THRESHOLD_FREQ);
//Choose LO frequencies
const double target_if1_freq = (_signal_path == twinrx_ctrl::PATH_HIGHBAND) ?
HB_TARGET_IF1_FREQ : LB_TARGET_IF1_FREQ;
const double target_if2_freq = _if_freq_d;
// LO1
double lo1_freq_ideal = 0.0, lo2_freq_ideal = 0.0;
if (rf_freq <= FIXED_LO1_THRESHOLD_FREQ) {
//LO1 Freq static
lo1_freq_ideal = target_if1_freq + FIXED_LO1_THRESHOLD_FREQ;
} else if (rf_freq <= INJ_SIDE_THRESHOLD_FREQ) {
//High-side LO1 Injection
lo1_freq_ideal = rf_freq.get() + target_if1_freq;
} else {
//Low-side LO1 Injection
lo1_freq_ideal = rf_freq.get() - target_if1_freq;
}
if (_lo1_freq_d.get_author() == experts::AUTHOR_USER) {
if (_lo1_freq_d.is_dirty()) { //Are we here because the LO frequency was set?
// The user explicitly requested to set the LO freq so don't touch it!
} else {
// Something else changed which may cause the LO frequency to update.
// Only commit if the frequency is stale. If the user's value is stale
// reset the author to expert.
if (rf_freq_ppm_t(lo1_freq_ideal, MANUAL_LO_HYSTERESIS_PPM) != _lo1_freq_d.get()) {
_lo1_freq_d = lo1_freq_ideal; //Reset author
}
}
} else {
// The LO frequency was never set by the user. Let the expert take care of it
_lo1_freq_d = lo1_freq_ideal; //Reset author
}
// LO2
lo_inj_side_t lo2_inj_side_ideal = _compute_lo2_inj_side(
lo1_freq_ideal, target_if1_freq, target_if2_freq, INST_BANDWIDTH);
if (lo2_inj_side_ideal == INJ_HIGH_SIDE) {
lo2_freq_ideal = target_if1_freq + target_if2_freq;
} else {
lo2_freq_ideal = target_if1_freq - target_if2_freq;
}
if (_lo2_freq_d.get_author() == experts::AUTHOR_USER) {
if (_lo2_freq_d.is_dirty()) { //Are we here because the LO frequency was set?
// The user explicitly requested to set the LO freq so don't touch it!
} else {
// Something else changed which may cause the LO frequency to update.
// Only commit if the frequency is stale. If the user's value is stale
// reset the author to expert.
if (rf_freq_ppm_t(lo2_freq_ideal, MANUAL_LO_HYSTERESIS_PPM) != _lo2_freq_d.get()) {
_lo2_freq_d = lo2_freq_ideal; //Reset author
}
}
} else {
// The LO frequency was never set by the user. Let the expert take care of it
_lo2_freq_d = lo2_freq_ideal; //Reset author
}
// Determine injection side using the final LO frequency
_lo1_inj_side = (_lo1_freq_d > rf_freq.get()) ? INJ_HIGH_SIDE : INJ_LOW_SIDE;
_lo2_inj_side = (_lo2_freq_d > target_if1_freq) ? INJ_HIGH_SIDE : INJ_LOW_SIDE;
}
lo_inj_side_t twinrx_freq_path_expert::_compute_lo2_inj_side(
double lo1_freq, double if1_freq, double if2_freq, double bandwidth
) {
static const int MAX_SPUR_ORDER = 5;
for (int ord = MAX_SPUR_ORDER; ord >= 1; ord--) {
// Check high-side injection first
if (not _has_mixer_spurs(lo1_freq, if1_freq + if2_freq, if2_freq, bandwidth, ord)) {
return INJ_HIGH_SIDE;
}
// Check low-side injection second
if (not _has_mixer_spurs(lo1_freq, if1_freq - if2_freq, if2_freq, bandwidth, ord)) {
return INJ_LOW_SIDE;
}
}
// If we reached here, then there are spurs everywhere. Pick high-side as the default
return INJ_HIGH_SIDE;
}
bool twinrx_freq_path_expert::_has_mixer_spurs(
double lo1_freq, double lo2_freq, double if2_freq,
double bandwidth, int spur_order
) {
// Iterate through all N-th order harmomic combinations
// of LOs...
for (int lo1h_i = 1; lo1h_i <= spur_order; lo1h_i++) {
double lo1harm_freq = lo1_freq * lo1h_i;
for (int lo2h_i = 1; lo2h_i <= spur_order; lo2h_i++) {
double lo2harm_freq = lo2_freq * lo2h_i;
double hdelta = lo1harm_freq - lo2harm_freq;
// .. and check if there is a mixer spur in the IF band
if (std::abs(hdelta + if2_freq) < bandwidth/2 or
std::abs(hdelta - if2_freq) < bandwidth/2) {
return true;
}
}
}
// No spurs were found after NxN search
return false;
}
/*!---------------------------------------------------------
* twinrx_freq_coercion_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_freq_coercion_expert::resolve()
{
const double actual_if2_freq = _if_freq_d;
const double actual_if1_freq = (_lo2_inj_side == INJ_LOW_SIDE) ?
(_lo2_freq_c + actual_if2_freq) : (_lo2_freq_c - actual_if2_freq);
_rf_freq_c = (_lo1_inj_side == INJ_LOW_SIDE) ?
(_lo1_freq_c + actual_if1_freq) : (_lo1_freq_c - actual_if1_freq);
}
/*!---------------------------------------------------------
* twinrx_nyquist_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_nyquist_expert::resolve()
{
// Do not execute when clear_command_time is called.
// This is a transition of the command time from non-zero to zero.
if (_rx_frontend_time == time_spec_t(0.0) and _cached_cmd_time != time_spec_t(0.0)) {
_cached_cmd_time = _rx_frontend_time;
return;
}
// Do not execute twice for the same command time unless untimed
if (_rx_frontend_time == _cached_cmd_time and _rx_frontend_time != time_spec_t(0.0)) {
return;
}
_cached_cmd_time = _rx_frontend_time;
double if_freq_sign = 1.0;
if (_lo1_inj_side == INJ_HIGH_SIDE) if_freq_sign *= -1.0;
if (_lo2_inj_side == INJ_HIGH_SIDE) if_freq_sign *= -1.0;
_if_freq_c = _if_freq_d * if_freq_sign;
_db_iface->set_fe_connection(dboard_iface::UNIT_RX, _channel,
usrp::fe_connection_t(_codec_conn, _if_freq_c));
}
/*!---------------------------------------------------------
* twinrx_chan_gain_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_chan_gain_expert::resolve()
{
if (_gain_profile != "default") {
//TODO: Implement me!
throw uhd::not_implemented_error("custom gain strategies not implemeted yet");
}
//Lookup table using settings
const twinrx_gain_table table = twinrx_gain_table::lookup_table(
_signal_path,
(_signal_path==twinrx_ctrl::PATH_HIGHBAND) ? _hb_presel : _lb_presel,
_gain_profile);
//Compute minimum gain. The user-specified gain value will be interpreted as
//the gain applied on top of the minimum gain state.
//If antennas are shared or swapped, the switch has 6dB of loss
size_t gain_index = std::min(static_cast(boost::math::round(_gain.get())), table.get_num_entries()-1);
//Translate gain to an index in the gain table
const twinrx_gain_config_t& config = table.find_by_index(gain_index);
_input_atten = config.atten1;
if (_signal_path == twinrx_ctrl::PATH_HIGHBAND) {
_hb_atten = config.atten2;
} else {
_lb_atten = config.atten2;
}
// Preamp 1 should use the Highband amp for frequencies above 3 GHz
if (_signal_path == twinrx_ctrl::PATH_HIGHBAND && _hb_presel != twinrx_ctrl::PRESEL_PATH1) {
_preamp1 = config.amp1 ? twinrx_ctrl::PREAMP_HIGHBAND : twinrx_ctrl::PREAMP_BYPASS;
} else {
_preamp1 = config.amp1 ? twinrx_ctrl::PREAMP_LOWBAND : twinrx_ctrl::PREAMP_BYPASS;
}
_preamp2 = config.amp2;
}
/*!---------------------------------------------------------
* twinrx_lo_config_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_lo_config_expert::resolve()
{
static const uhd::dict src_lookup =
boost::assign::map_list_of
("internal", twinrx_ctrl::LO_INTERNAL)
("external", twinrx_ctrl::LO_EXTERNAL)
("companion", twinrx_ctrl::LO_COMPANION)
("disabled", twinrx_ctrl::LO_DISABLED);
if (src_lookup.has_key(_lo_source_ch0)) {
_lo1_src_ch0 = _lo2_src_ch0 = src_lookup[_lo_source_ch0];
} else {
throw uhd::value_error("Invalid LO source for channel 0.Choose from {internal, external, companion}");
}
if (src_lookup.has_key(_lo_source_ch1)) {
_lo1_src_ch1 = _lo2_src_ch1 = src_lookup[_lo_source_ch1];
} else {
throw uhd::value_error("Invalid LO source for channel 1.Choose from {internal, external, companion}");
}
twinrx_ctrl::lo_export_source_t export_src = twinrx_ctrl::LO_EXPORT_DISABLED;
if (_lo_export_ch0 and (_lo_source_ch0 == "external")) {
throw uhd::value_error("Cannot export an external LO for channel 0");
}
if (_lo_export_ch1 and (_lo_source_ch1 == "external")) {
throw uhd::value_error("Cannot export an external LO for channel 1");
}
if (_lo_export_ch0 and _lo_export_ch1) {
throw uhd::value_error("Cannot export LOs for both channels");
} else if (_lo_export_ch0) {
export_src = (_lo1_src_ch0 == twinrx_ctrl::LO_INTERNAL) ?
twinrx_ctrl::LO_CH1_SYNTH : twinrx_ctrl::LO_CH2_SYNTH;
} else if (_lo_export_ch1) {
export_src = (_lo1_src_ch1 == twinrx_ctrl::LO_INTERNAL) ?
twinrx_ctrl::LO_CH2_SYNTH : twinrx_ctrl::LO_CH1_SYNTH;
}
_lo1_export_src = _lo2_export_src = export_src;
}
/*!---------------------------------------------------------
* twinrx_lo_freq_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_lo_mapping_expert::resolve()
{
static const size_t CH0_MSK = 0x1;
static const size_t CH1_MSK = 0x2;
// Determine which channels are "driving" each synthesizer
// First check for explicit requests i.e. lo_source "internal" or "companion"
size_t synth_map[] = {0, 0};
if (_lox_src_ch0 == twinrx_ctrl::LO_INTERNAL) {
synth_map[0] = synth_map[0] | CH0_MSK;
} else if (_lox_src_ch0 == twinrx_ctrl::LO_COMPANION) {
synth_map[1] = synth_map[1] | CH0_MSK;
}
if (_lox_src_ch1 == twinrx_ctrl::LO_INTERNAL) {
synth_map[1] = synth_map[1] | CH1_MSK;
} else if (_lox_src_ch1 == twinrx_ctrl::LO_COMPANION) {
synth_map[0] = synth_map[0] | CH1_MSK;
}
// If a particular channel has its LO source disabled then the other
// channel is automatically put in hop mode i.e. the synthesizer that
// belongs to the disabled channel can be re-purposed as a redundant LO
// to overlap tuning with signal dwell time.
bool hopping_enabled = false;
if (_lox_src_ch0 == twinrx_ctrl::LO_DISABLED) {
if (_lox_src_ch1 == twinrx_ctrl::LO_INTERNAL) {
synth_map[0] = synth_map[0] | CH0_MSK;
hopping_enabled = true;
} else if (_lox_src_ch1 == twinrx_ctrl::LO_COMPANION) {
synth_map[1] = synth_map[1] | CH0_MSK;
hopping_enabled = true;
}
}
if (_lox_src_ch1 == twinrx_ctrl::LO_DISABLED) {
if (_lox_src_ch0 == twinrx_ctrl::LO_INTERNAL) {
synth_map[1] = synth_map[1] | CH1_MSK;
hopping_enabled = true;
} else if (_lox_src_ch0 == twinrx_ctrl::LO_COMPANION) {
synth_map[0] = synth_map[0] | CH1_MSK;
hopping_enabled = true;
}
}
// For each synthesizer come up with the final mapping
for (size_t synth = 0; synth < 2; synth++) {
experts::data_writer_t& lox_mapping =
(synth == 0) ? _lox_mapping_synth0 : _lox_mapping_synth1;
if (synth_map[synth] == (CH0_MSK|CH1_MSK)) {
lox_mapping = MAPPING_SHARED;
} else if (synth_map[synth] == CH0_MSK) {
lox_mapping = MAPPING_CH0;
} else if (synth_map[synth] == CH1_MSK) {
lox_mapping = MAPPING_CH1;
} else {
lox_mapping = MAPPING_NONE;
}
}
_lox_hopping_enabled = hopping_enabled;
}
/*!---------------------------------------------------------
* twinrx_antenna_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_antenna_expert::resolve()
{
static const std::string ANT0 = "RX1", ANT1 = "RX2";
if (_antenna_ch0 == ANT0 and _antenna_ch1 == ANT1) {
_ant_mapping = twinrx_ctrl::ANTX_NATIVE;
} else if (_antenna_ch0 == ANT0 and _antenna_ch1 == ANT0) {
if (_enabled_ch0 and _enabled_ch1) {
_ant_mapping = twinrx_ctrl::ANT1_SHARED;
} else if (_enabled_ch0) {
_ant_mapping = twinrx_ctrl::ANTX_NATIVE;
} else if (_enabled_ch1) {
_ant_mapping = twinrx_ctrl::ANTX_SWAPPED;
}
} else if (_antenna_ch0 == ANT1 and _antenna_ch1 == ANT1) {
if (_enabled_ch0 and _enabled_ch1) {
_ant_mapping = twinrx_ctrl::ANT2_SHARED;
} else if (_enabled_ch0) {
_ant_mapping = twinrx_ctrl::ANTX_SWAPPED;
} else if (_enabled_ch1) {
_ant_mapping = twinrx_ctrl::ANTX_NATIVE;
}
} else if (_antenna_ch0 == ANT1 and _antenna_ch1 == ANT0) {
_ant_mapping = twinrx_ctrl::ANTX_SWAPPED;
} else if (_antenna_ch0 != ANT0 and _antenna_ch0 != ANT1) {
throw uhd::value_error("Invalid antenna selection " + _antenna_ch0.get() + " for channel 0. Must be " + ANT0 + " or " + ANT1);
} else if (_antenna_ch1 != ANT0 and _antenna_ch1 != ANT1) {
throw uhd::value_error("Invalid antenna selection " + _antenna_ch1.get() + " for channel 1. Must be " + ANT0 + " or " + ANT1);
}
//TODO: Implement hooks for the calibration switch
_cal_mode = twinrx_ctrl::CAL_DISABLED;
if (_cal_mode == twinrx_ctrl::CAL_CH1 and _lo_export_ch1) {
throw uhd::value_error("Cannot calibrate channel 0 and export the LO for channel 1.");
} else if (_cal_mode == twinrx_ctrl::CAL_CH2 and _lo_export_ch0) {
throw uhd::value_error("Cannot calibrate channel 1 and export the LO for channel 0.");
}
}
/*!---------------------------------------------------------
* twinrx_ant_gain_expert::resolve
* ---------------------------------------------------------
*/
void twinrx_ant_gain_expert::resolve()
{
switch (_ant_mapping) {
case twinrx_ctrl::ANTX_NATIVE:
_ant0_input_atten = _ch0_input_atten;
_ant0_preamp1 = _ch0_preamp1;
_ant0_preamp2 = _ch0_preamp2;
_ant0_lb_preamp_presel = _ch0_lb_preamp_presel;
_ant1_input_atten = _ch1_input_atten;
_ant1_preamp1 = _ch1_preamp1;
_ant1_preamp2 = _ch1_preamp2;
_ant1_lb_preamp_presel = _ch1_lb_preamp_presel;
break;
case twinrx_ctrl::ANTX_SWAPPED:
_ant0_input_atten = _ch1_input_atten;
_ant0_preamp1 = _ch1_preamp1;
_ant0_preamp2 = _ch1_preamp2;
_ant0_lb_preamp_presel = _ch1_lb_preamp_presel;
_ant1_input_atten = _ch0_input_atten;
_ant1_preamp1 = _ch0_preamp1;
_ant1_preamp2 = _ch0_preamp2;
_ant1_lb_preamp_presel = _ch0_lb_preamp_presel;
break;
case twinrx_ctrl::ANT1_SHARED:
if ((_ch0_input_atten != _ch1_input_atten) or
(_ch0_preamp1 != _ch1_preamp1) or
(_ch0_preamp2 != _ch1_preamp2) or
(_ch0_lb_preamp_presel != _ch1_lb_preamp_presel))
{
UHD_LOGGER_WARNING("TWINRX") << "incompatible gain settings for antenna sharing. temporarily using Ch0 settings for Ch1.";
}
_ant0_input_atten = _ch0_input_atten;
_ant0_preamp1 = _ch0_preamp1;
_ant0_preamp2 = _ch0_preamp2;
_ant0_lb_preamp_presel = _ch0_lb_preamp_presel;
_ant1_input_atten = 0;
_ant1_preamp1 = twinrx_ctrl::PREAMP_BYPASS;
_ant1_preamp2 = false;
_ant1_lb_preamp_presel = false;
break;
case twinrx_ctrl::ANT2_SHARED:
if ((_ch0_input_atten != _ch1_input_atten) or
(_ch0_preamp1 != _ch1_preamp1) or
(_ch0_preamp2 != _ch1_preamp2) or
(_ch0_lb_preamp_presel != _ch1_lb_preamp_presel))
{
UHD_LOGGER_WARNING("TWINRX") << "incompatible gain settings for antenna sharing. temporarily using Ch0 settings for Ch1.";
}
_ant1_input_atten = _ch0_input_atten;
_ant1_preamp1 = _ch0_preamp1;
_ant1_preamp2 = _ch0_preamp2;
_ant1_lb_preamp_presel = _ch0_lb_preamp_presel;
_ant0_input_atten = 0;
_ant0_preamp1 = twinrx_ctrl::PREAMP_BYPASS;
_ant0_preamp2 = false;
_ant0_lb_preamp_presel = false;
break;
default:
_ant0_input_atten = 0;
_ant0_preamp1 = twinrx_ctrl::PREAMP_BYPASS;
_ant0_preamp2 = false;
_ant0_lb_preamp_presel = false;
_ant1_input_atten = 0;
_ant1_preamp1 = twinrx_ctrl::PREAMP_BYPASS;
_ant1_preamp2 = false;
_ant1_lb_preamp_presel = false;
break;
}
}
/*!---------------------------------------------------------
* twinrx_settings_expert::resolve
* ---------------------------------------------------------
*/
const bool twinrx_settings_expert::FORCE_COMMIT = false;
void twinrx_settings_expert::resolve()
{
for (size_t i = 0; i < 2; i++) {
ch_settings& ch_set = (i == 1) ? _ch1 : _ch0;
twinrx_ctrl::channel_t ch = (i == 1) ? twinrx_ctrl::CH2 : twinrx_ctrl::CH1;
_ctrl->set_chan_enabled(ch, ch_set.chan_enabled, FORCE_COMMIT);
_ctrl->set_preamp1(ch, ch_set.preamp1, FORCE_COMMIT);
_ctrl->set_preamp2(ch, ch_set.preamp2, FORCE_COMMIT);
_ctrl->set_lb_preamp_preselector(ch, ch_set.lb_preamp_presel, FORCE_COMMIT);
_ctrl->set_signal_path(ch, ch_set.signal_path, FORCE_COMMIT);
_ctrl->set_lb_preselector(ch, ch_set.lb_presel, FORCE_COMMIT);
_ctrl->set_hb_preselector(ch, ch_set.hb_presel, FORCE_COMMIT);
_ctrl->set_input_atten(ch, ch_set.input_atten, FORCE_COMMIT);
_ctrl->set_lb_atten(ch, ch_set.lb_atten, FORCE_COMMIT);
_ctrl->set_hb_atten(ch, ch_set.hb_atten, FORCE_COMMIT);
_ctrl->set_lo1_source(ch, ch_set.lo1_source, FORCE_COMMIT);
_ctrl->set_lo2_source(ch, ch_set.lo2_source, FORCE_COMMIT);
}
_resolve_lox_freq(STAGE_LO1,
_ch0.lo1_freq_d, _ch1.lo1_freq_d, _ch0.lo1_freq_c, _ch1.lo1_freq_c,
_ch0.lo1_source, _ch1.lo1_source, _lo1_synth0_mapping, _lo1_synth1_mapping,
_lo1_hopping_enabled);
_resolve_lox_freq(STAGE_LO2,
_ch0.lo2_freq_d, _ch1.lo2_freq_d, _ch0.lo2_freq_c, _ch1.lo2_freq_c,
_ch0.lo2_source, _ch1.lo2_source, _lo2_synth0_mapping, _lo2_synth1_mapping,
_lo2_hopping_enabled);
_ctrl->set_lo1_export_source(_lo1_export_src, FORCE_COMMIT);
_ctrl->set_lo2_export_source(_lo2_export_src, FORCE_COMMIT);
_ctrl->set_antenna_mapping(_ant_mapping, FORCE_COMMIT);
//TODO: Re-enable this when we support this mode
//_ctrl->set_crossover_cal_mode(_cal_mode, FORCE_COMMIT);
_ctrl->commit();
}
void twinrx_settings_expert::_resolve_lox_freq(
lo_stage_t lo_stage,
uhd::experts::data_reader_t& ch0_freq_d,
uhd::experts::data_reader_t& ch1_freq_d,
uhd::experts::data_writer_t& ch0_freq_c,
uhd::experts::data_writer_t& ch1_freq_c,
twinrx_ctrl::lo_source_t ch0_lo_source,
twinrx_ctrl::lo_source_t ch1_lo_source,
lo_synth_mapping_t synth0_mapping,
lo_synth_mapping_t synth1_mapping,
bool hopping_enabled)
{
if (ch0_lo_source == twinrx_ctrl::LO_EXTERNAL) {
// If the LO is external then we don't need to program any synthesizers
ch0_freq_c = ch0_freq_d;
} else {
// When in hopping mode, only attempt to write the LO frequency if it is actually
// dirty to avoid reconfiguring the LO if it is being "double-buffered". If not
// hopping, then always write the frequency because other inputs might require
// an LO re-commit
const bool freq_update_request = (not hopping_enabled) or ch0_freq_d.is_dirty();
if (synth0_mapping == MAPPING_CH0 and freq_update_request) {
ch0_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH1, ch0_freq_d);
} else if (synth1_mapping == MAPPING_CH0 and freq_update_request) {
ch0_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH2, ch0_freq_d);
} else if (synth0_mapping == MAPPING_SHARED or synth1_mapping == MAPPING_SHARED) {
// If any synthesizer is being shared then we are not in hopping mode
twinrx_ctrl::channel_t ch = (synth0_mapping == MAPPING_SHARED) ? twinrx_ctrl::CH1 : twinrx_ctrl::CH2;
ch0_freq_c = _set_lox_synth_freq(lo_stage, ch, ch0_freq_d);
ch1_freq_c = ch0_freq_c;
}
}
if (ch1_lo_source == twinrx_ctrl::LO_EXTERNAL) {
// If the LO is external then we don't need to program any synthesizers
ch1_freq_c = ch1_freq_d;
} else {
// When in hopping mode, only attempt to write the LO frequency if it is actually
// dirty to avoid reconfiguring the LO if it is being "double-buffered". If not
// hopping, then always write the frequency because other inputs might require
// an LO re-commit
const bool freq_update_request = (not hopping_enabled) or ch1_freq_d.is_dirty();
// As an additional layer of protection from unnecessarily committing the LO, check
// if the frequency has actually changed.
if (synth0_mapping == MAPPING_CH1 and freq_update_request) {
ch1_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH1, ch1_freq_d);
} else if (synth1_mapping == MAPPING_CH1 and freq_update_request) {
ch1_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH2, ch1_freq_d);
} else if (synth0_mapping == MAPPING_SHARED or synth1_mapping == MAPPING_SHARED) {
// If any synthesizer is being shared then we are not in hopping mode
twinrx_ctrl::channel_t ch = (synth0_mapping == MAPPING_SHARED) ? twinrx_ctrl::CH1 : twinrx_ctrl::CH2;
ch0_freq_c = _set_lox_synth_freq(lo_stage, ch, ch0_freq_d);
ch1_freq_c = ch0_freq_c;
}
}
}
double twinrx_settings_expert::_set_lox_synth_freq(lo_stage_t stage, twinrx_ctrl::channel_t ch, double freq)
{
lo_freq_cache_t* freq_cache = NULL;
if (stage == STAGE_LO1) {
freq_cache = (ch == twinrx_ctrl::CH1) ? &_cached_lo1_synth0_freq : &_cached_lo1_synth1_freq;
} else if (stage == STAGE_LO2) {
freq_cache = (ch == twinrx_ctrl::CH1) ? &_cached_lo2_synth0_freq : &_cached_lo2_synth1_freq;
} else {
throw uhd::assertion_error("Invalid LO stage");
}
// Check if the frequency has actually changed before configuring synthesizers
double coerced_freq = 0.0;
if (freq_cache->desired != freq) {
if (stage == STAGE_LO1) {
coerced_freq = _ctrl->set_lo1_synth_freq(ch, freq, FORCE_COMMIT);
} else {
coerced_freq = _ctrl->set_lo2_synth_freq(ch, freq, FORCE_COMMIT);
}
freq_cache->desired = rf_freq_ppm_t(freq);
freq_cache->coerced = coerced_freq;
} else {
coerced_freq = freq_cache->coerced;
}
return coerced_freq;
}