// // Copyright 2016 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "twinrx_experts.hpp" #include "twinrx_gain_tables.hpp" #include #include #include #include #include #include #include using namespace uhd::experts; using namespace uhd::math; using namespace uhd::usrp::dboard::twinrx; /*!--------------------------------------------------------- * twinrx_scheduling_expert::resolve * --------------------------------------------------------- */ void twinrx_scheduling_expert::resolve() { // Currently a straight pass-through. To be expanded as needed // when more advanced scheduling is needed _rx_frontend_time = _command_time; } /*!--------------------------------------------------------- * twinrx_freq_path_expert::resolve * --------------------------------------------------------- */ void twinrx_freq_path_expert::resolve() { //Lowband/highband switch point static const double LB_HB_THRESHOLD_FREQ = 1.8e9; static const double LB_TARGET_IF1_FREQ = 2.345e9; static const double HB_TARGET_IF1_FREQ = 1.25e9; static const double INJ_SIDE_THRESHOLD_FREQ = 5.1e9; static const double FIXED_LO1_THRESHOLD_FREQ= 50e6; //Preselector filter switch point static const double LB_FILT1_THRESHOLD_FREQ = 0.5e9; static const double LB_FILT2_THRESHOLD_FREQ = 0.8e9; static const double LB_FILT3_THRESHOLD_FREQ = 1.2e9; static const double LB_FILT4_THRESHOLD_FREQ = 1.8e9; static const double HB_FILT1_THRESHOLD_FREQ = 3.0e9; static const double HB_FILT2_THRESHOLD_FREQ = 4.1e9; static const double HB_FILT3_THRESHOLD_FREQ = 5.1e9; static const double HB_FILT4_THRESHOLD_FREQ = 6.0e9; static const double LB_PREAMP_PRESEL_THRESHOLD_FREQ = 0.8e9; //Misc static const double INST_BANDWIDTH = 80e6; static const double MANUAL_LO_HYSTERESIS_PPM = 1.0; static const freq_range_t FREQ_RANGE(10e6, 6e9); rf_freq_abs_t rf_freq(FREQ_RANGE.clip(_rf_freq_d)); // Choose low-band vs high-band depending on frequency _signal_path = (rf_freq > LB_HB_THRESHOLD_FREQ) ? twinrx_ctrl::PATH_HIGHBAND : twinrx_ctrl::PATH_LOWBAND; if (_signal_path == twinrx_ctrl::PATH_LOWBAND) { // Choose low-band preselector filter if (rf_freq < LB_FILT1_THRESHOLD_FREQ) { _lb_presel = twinrx_ctrl::PRESEL_PATH1; } else if (rf_freq < LB_FILT2_THRESHOLD_FREQ) { _lb_presel = twinrx_ctrl::PRESEL_PATH2; } else if (rf_freq < LB_FILT3_THRESHOLD_FREQ) { _lb_presel = twinrx_ctrl::PRESEL_PATH3; } else if (rf_freq < LB_FILT4_THRESHOLD_FREQ) { _lb_presel = twinrx_ctrl::PRESEL_PATH4; } else { _lb_presel = twinrx_ctrl::PRESEL_PATH4; } } else if (_signal_path == twinrx_ctrl::PATH_HIGHBAND) { // Choose high-band preselector filter if (rf_freq < HB_FILT1_THRESHOLD_FREQ) { _hb_presel = twinrx_ctrl::PRESEL_PATH1; } else if (rf_freq < HB_FILT2_THRESHOLD_FREQ) { _hb_presel = twinrx_ctrl::PRESEL_PATH2; } else if (rf_freq < HB_FILT3_THRESHOLD_FREQ) { _hb_presel = twinrx_ctrl::PRESEL_PATH3; } else if (rf_freq < HB_FILT4_THRESHOLD_FREQ) { _hb_presel = twinrx_ctrl::PRESEL_PATH4; } else { _hb_presel = twinrx_ctrl::PRESEL_PATH4; } } else { UHD_THROW_INVALID_CODE_PATH(); } //Choose low-band preamp preselector _lb_preamp_presel = (rf_freq > LB_PREAMP_PRESEL_THRESHOLD_FREQ); //Choose LO frequencies const double target_if1_freq = (_signal_path == twinrx_ctrl::PATH_HIGHBAND) ? HB_TARGET_IF1_FREQ : LB_TARGET_IF1_FREQ; const double target_if2_freq = _if_freq_d; // LO1 double lo1_freq_ideal = 0.0, lo2_freq_ideal = 0.0; if (rf_freq <= FIXED_LO1_THRESHOLD_FREQ) { //LO1 Freq static lo1_freq_ideal = target_if1_freq + FIXED_LO1_THRESHOLD_FREQ; } else if (rf_freq <= INJ_SIDE_THRESHOLD_FREQ) { //High-side LO1 Injection lo1_freq_ideal = rf_freq.get() + target_if1_freq; } else { //Low-side LO1 Injection lo1_freq_ideal = rf_freq.get() - target_if1_freq; } if (_lo1_freq_d.get_author() == experts::AUTHOR_USER) { if (_lo1_freq_d.is_dirty()) { //Are we here because the LO frequency was set? // The user explicitly requested to set the LO freq so don't touch it! } else { // Something else changed which may cause the LO frequency to update. // Only commit if the frequency is stale. If the user's value is stale // reset the author to expert. if (rf_freq_ppm_t(lo1_freq_ideal, MANUAL_LO_HYSTERESIS_PPM) != _lo1_freq_d.get()) { _lo1_freq_d = lo1_freq_ideal; //Reset author } } } else { // The LO frequency was never set by the user. Let the expert take care of it _lo1_freq_d = lo1_freq_ideal; //Reset author } // LO2 lo_inj_side_t lo2_inj_side_ideal = _compute_lo2_inj_side( lo1_freq_ideal, target_if1_freq, target_if2_freq, INST_BANDWIDTH); if (lo2_inj_side_ideal == INJ_HIGH_SIDE) { lo2_freq_ideal = target_if1_freq + target_if2_freq; } else { lo2_freq_ideal = target_if1_freq - target_if2_freq; } if (_lo2_freq_d.get_author() == experts::AUTHOR_USER) { if (_lo2_freq_d.is_dirty()) { //Are we here because the LO frequency was set? // The user explicitly requested to set the LO freq so don't touch it! } else { // Something else changed which may cause the LO frequency to update. // Only commit if the frequency is stale. If the user's value is stale // reset the author to expert. if (rf_freq_ppm_t(lo2_freq_ideal, MANUAL_LO_HYSTERESIS_PPM) != _lo2_freq_d.get()) { _lo2_freq_d = lo2_freq_ideal; //Reset author } } } else { // The LO frequency was never set by the user. Let the expert take care of it _lo2_freq_d = lo2_freq_ideal; //Reset author } // Determine injection side using the final LO frequency _lo1_inj_side = (_lo1_freq_d > rf_freq.get()) ? INJ_HIGH_SIDE : INJ_LOW_SIDE; _lo2_inj_side = (_lo2_freq_d > target_if1_freq) ? INJ_HIGH_SIDE : INJ_LOW_SIDE; } lo_inj_side_t twinrx_freq_path_expert::_compute_lo2_inj_side( double lo1_freq, double if1_freq, double if2_freq, double bandwidth ) { static const int MAX_SPUR_ORDER = 5; for (int ord = MAX_SPUR_ORDER; ord >= 1; ord--) { // Check high-side injection first if (not _has_mixer_spurs(lo1_freq, if1_freq + if2_freq, if2_freq, bandwidth, ord)) { return INJ_HIGH_SIDE; } // Check low-side injection second if (not _has_mixer_spurs(lo1_freq, if1_freq - if2_freq, if2_freq, bandwidth, ord)) { return INJ_LOW_SIDE; } } // If we reached here, then there are spurs everywhere. Pick high-side as the default return INJ_HIGH_SIDE; } bool twinrx_freq_path_expert::_has_mixer_spurs( double lo1_freq, double lo2_freq, double if2_freq, double bandwidth, int spur_order ) { // Iterate through all N-th order harmomic combinations // of LOs... for (int lo1h_i = 1; lo1h_i <= spur_order; lo1h_i++) { double lo1harm_freq = lo1_freq * lo1h_i; for (int lo2h_i = 1; lo2h_i <= spur_order; lo2h_i++) { double lo2harm_freq = lo2_freq * lo2h_i; double hdelta = lo1harm_freq - lo2harm_freq; // .. and check if there is a mixer spur in the IF band if (std::abs(hdelta + if2_freq) < bandwidth/2 or std::abs(hdelta - if2_freq) < bandwidth/2) { return true; } } } // No spurs were found after NxN search return false; } /*!--------------------------------------------------------- * twinrx_freq_coercion_expert::resolve * --------------------------------------------------------- */ void twinrx_freq_coercion_expert::resolve() { const double actual_if2_freq = _if_freq_d; const double actual_if1_freq = (_lo2_inj_side == INJ_LOW_SIDE) ? (_lo2_freq_c + actual_if2_freq) : (_lo2_freq_c - actual_if2_freq); _rf_freq_c = (_lo1_inj_side == INJ_LOW_SIDE) ? (_lo1_freq_c + actual_if1_freq) : (_lo1_freq_c - actual_if1_freq); } /*!--------------------------------------------------------- * twinrx_nyquist_expert::resolve * --------------------------------------------------------- */ void twinrx_nyquist_expert::resolve() { // Do not execute when clear_command_time is called. // This is a transition of the command time from non-zero to zero. if (_rx_frontend_time == time_spec_t(0.0) and _cached_cmd_time != time_spec_t(0.0)) { _cached_cmd_time = _rx_frontend_time; return; } // Do not execute twice for the same command time unless untimed if (_rx_frontend_time == _cached_cmd_time and _rx_frontend_time != time_spec_t(0.0)) { return; } _cached_cmd_time = _rx_frontend_time; double if_freq_sign = 1.0; if (_lo1_inj_side == INJ_HIGH_SIDE) if_freq_sign *= -1.0; if (_lo2_inj_side == INJ_HIGH_SIDE) if_freq_sign *= -1.0; _if_freq_c = _if_freq_d * if_freq_sign; _db_iface->set_fe_connection(dboard_iface::UNIT_RX, _channel, usrp::fe_connection_t(_codec_conn, _if_freq_c)); } /*!--------------------------------------------------------- * twinrx_chan_gain_expert::resolve * --------------------------------------------------------- */ void twinrx_chan_gain_expert::resolve() { if (_gain_profile != "default") { //TODO: Implement me! throw uhd::not_implemented_error("custom gain strategies not implemeted yet"); } //Lookup table using settings const twinrx_gain_table table = twinrx_gain_table::lookup_table( _signal_path, (_signal_path==twinrx_ctrl::PATH_HIGHBAND) ? _hb_presel : _lb_presel, _gain_profile); //Compute minimum gain. The user-specified gain value will be interpreted as //the gain applied on top of the minimum gain state. //If antennas are shared or swapped, the switch has 6dB of loss size_t gain_index = std::min(static_cast(boost::math::round(_gain.get())), table.get_num_entries()-1); //Translate gain to an index in the gain table const twinrx_gain_config_t& config = table.find_by_index(gain_index); _input_atten = config.atten1; if (_signal_path == twinrx_ctrl::PATH_HIGHBAND) { _hb_atten = config.atten2; } else { _lb_atten = config.atten2; } // Preamp 1 should use the Highband amp for frequencies above 3 GHz if (_signal_path == twinrx_ctrl::PATH_HIGHBAND && _hb_presel != twinrx_ctrl::PRESEL_PATH1) { _preamp1 = config.amp1 ? twinrx_ctrl::PREAMP_HIGHBAND : twinrx_ctrl::PREAMP_BYPASS; } else { _preamp1 = config.amp1 ? twinrx_ctrl::PREAMP_LOWBAND : twinrx_ctrl::PREAMP_BYPASS; } _preamp2 = config.amp2; } /*!--------------------------------------------------------- * twinrx_lo_config_expert::resolve * --------------------------------------------------------- */ void twinrx_lo_config_expert::resolve() { static const uhd::dict src_lookup = boost::assign::map_list_of ("internal", twinrx_ctrl::LO_INTERNAL) ("external", twinrx_ctrl::LO_EXTERNAL) ("companion", twinrx_ctrl::LO_COMPANION) ("disabled", twinrx_ctrl::LO_DISABLED) ("reimport", twinrx_ctrl::LO_REIMPORT); if (src_lookup.has_key(_lo_source_ch0)) { _lo1_src_ch0 = _lo2_src_ch0 = src_lookup[_lo_source_ch0]; } else { throw uhd::value_error("Invalid LO source for channel 0.Choose from {internal, external, companion, reimport}"); } if (src_lookup.has_key(_lo_source_ch1)) { _lo1_src_ch1 = _lo2_src_ch1 = src_lookup[_lo_source_ch1]; } else { throw uhd::value_error("Invalid LO source for channel 1.Choose from {internal, external, companion, reimport}"); } twinrx_ctrl::lo_export_source_t export_src = twinrx_ctrl::LO_EXPORT_DISABLED; if (_lo_export_ch0 and (_lo_source_ch0 == "external")) { throw uhd::value_error("Cannot export an external LO for channel 0"); } if (_lo_export_ch1 and (_lo_source_ch1 == "external")) { throw uhd::value_error("Cannot export an external LO for channel 1"); } // Determine which channel will provide the exported LO if (_lo_export_ch0 and _lo_export_ch1) { throw uhd::value_error("Cannot export LOs for both channels"); } else if (_lo_export_ch0) { export_src = (_lo1_src_ch0 == twinrx_ctrl::LO_COMPANION) ? twinrx_ctrl::LO_CH2_SYNTH : twinrx_ctrl::LO_CH1_SYNTH; } else if (_lo_export_ch1) { export_src = (_lo1_src_ch1 == twinrx_ctrl::LO_COMPANION) ? twinrx_ctrl::LO_CH1_SYNTH : twinrx_ctrl::LO_CH2_SYNTH; } _lo1_export_src = _lo2_export_src = export_src; } /*!--------------------------------------------------------- * twinrx_lo_freq_expert::resolve * --------------------------------------------------------- */ void twinrx_lo_mapping_expert::resolve() { static const size_t CH0_MSK = 0x1; static const size_t CH1_MSK = 0x2; // Determine which channels are "driving" each synthesizer // First check for explicit requests // "internal" or "reimport" -> this channel // "companion" -> other channel size_t synth_map[] = {0, 0}; if (_lox_src_ch0 == twinrx_ctrl::LO_INTERNAL or _lox_src_ch0 == twinrx_ctrl::LO_REIMPORT) { synth_map[0] = synth_map[0] | CH0_MSK; } else if (_lox_src_ch0 == twinrx_ctrl::LO_COMPANION) { synth_map[1] = synth_map[1] | CH0_MSK; } if (_lox_src_ch1 == twinrx_ctrl::LO_INTERNAL or _lox_src_ch1 == twinrx_ctrl::LO_REIMPORT) { synth_map[1] = synth_map[1] | CH1_MSK; } else if (_lox_src_ch1 == twinrx_ctrl::LO_COMPANION) { synth_map[0] = synth_map[0] | CH1_MSK; } // If a particular channel has its LO source disabled then the other // channel is automatically put in hop mode i.e. the synthesizer that // belongs to the disabled channel can be re-purposed as a redundant LO // to overlap tuning with signal dwell time. bool hopping_enabled = false; if (_lox_src_ch0 == twinrx_ctrl::LO_DISABLED) { if (_lox_src_ch1 == twinrx_ctrl::LO_INTERNAL or _lox_src_ch1 == twinrx_ctrl::LO_REIMPORT) { synth_map[0] = synth_map[0] | CH0_MSK; hopping_enabled = true; } else if (_lox_src_ch1 == twinrx_ctrl::LO_COMPANION) { synth_map[1] = synth_map[1] | CH0_MSK; hopping_enabled = true; } } if (_lox_src_ch1 == twinrx_ctrl::LO_DISABLED) { if (_lox_src_ch0 == twinrx_ctrl::LO_INTERNAL or _lox_src_ch0 == twinrx_ctrl::LO_REIMPORT) { synth_map[1] = synth_map[1] | CH1_MSK; hopping_enabled = true; } else if (_lox_src_ch0 == twinrx_ctrl::LO_COMPANION) { synth_map[0] = synth_map[0] | CH1_MSK; hopping_enabled = true; } } // For each synthesizer come up with the final mapping for (size_t synth = 0; synth < 2; synth++) { experts::data_writer_t& lox_mapping = (synth == 0) ? _lox_mapping_synth0 : _lox_mapping_synth1; if (synth_map[synth] == (CH0_MSK|CH1_MSK)) { lox_mapping = MAPPING_SHARED; } else if (synth_map[synth] == CH0_MSK) { lox_mapping = MAPPING_CH0; } else if (synth_map[synth] == CH1_MSK) { lox_mapping = MAPPING_CH1; } else { lox_mapping = MAPPING_NONE; } } _lox_hopping_enabled = hopping_enabled; } /*!--------------------------------------------------------- * twinrx_antenna_expert::resolve * --------------------------------------------------------- */ void twinrx_antenna_expert::resolve() { static const std::string ANT0 = "RX1", ANT1 = "RX2"; if (_antenna_ch0 == ANT0 and _antenna_ch1 == ANT1) { _ant_mapping = twinrx_ctrl::ANTX_NATIVE; } else if (_antenna_ch0 == ANT0 and _antenna_ch1 == ANT0) { if (_enabled_ch0 and _enabled_ch1) { _ant_mapping = twinrx_ctrl::ANT1_SHARED; } else if (_enabled_ch0) { _ant_mapping = twinrx_ctrl::ANTX_NATIVE; } else if (_enabled_ch1) { _ant_mapping = twinrx_ctrl::ANTX_SWAPPED; } } else if (_antenna_ch0 == ANT1 and _antenna_ch1 == ANT1) { if (_enabled_ch0 and _enabled_ch1) { _ant_mapping = twinrx_ctrl::ANT2_SHARED; } else if (_enabled_ch0) { _ant_mapping = twinrx_ctrl::ANTX_SWAPPED; } else if (_enabled_ch1) { _ant_mapping = twinrx_ctrl::ANTX_NATIVE; } } else if (_antenna_ch0 == ANT1 and _antenna_ch1 == ANT0) { _ant_mapping = twinrx_ctrl::ANTX_SWAPPED; } else if (_antenna_ch0 != ANT0 and _antenna_ch0 != ANT1) { throw uhd::value_error("Invalid antenna selection " + _antenna_ch0.get() + " for channel 0. Must be " + ANT0 + " or " + ANT1); } else if (_antenna_ch1 != ANT0 and _antenna_ch1 != ANT1) { throw uhd::value_error("Invalid antenna selection " + _antenna_ch1.get() + " for channel 1. Must be " + ANT0 + " or " + ANT1); } //TODO: Implement hooks for the calibration switch _cal_mode = twinrx_ctrl::CAL_DISABLED; if (_cal_mode == twinrx_ctrl::CAL_CH1 and _lo_export_ch1) { throw uhd::value_error("Cannot calibrate channel 0 and export the LO for channel 1."); } else if (_cal_mode == twinrx_ctrl::CAL_CH2 and _lo_export_ch0) { throw uhd::value_error("Cannot calibrate channel 1 and export the LO for channel 0."); } } /*!--------------------------------------------------------- * twinrx_ant_gain_expert::resolve * --------------------------------------------------------- */ void twinrx_ant_gain_expert::resolve() { switch (_ant_mapping) { case twinrx_ctrl::ANTX_NATIVE: _ant0_input_atten = _ch0_input_atten; _ant0_preamp1 = _ch0_preamp1; _ant0_preamp2 = _ch0_preamp2; _ant0_lb_preamp_presel = _ch0_lb_preamp_presel; _ant1_input_atten = _ch1_input_atten; _ant1_preamp1 = _ch1_preamp1; _ant1_preamp2 = _ch1_preamp2; _ant1_lb_preamp_presel = _ch1_lb_preamp_presel; break; case twinrx_ctrl::ANTX_SWAPPED: _ant0_input_atten = _ch1_input_atten; _ant0_preamp1 = _ch1_preamp1; _ant0_preamp2 = _ch1_preamp2; _ant0_lb_preamp_presel = _ch1_lb_preamp_presel; _ant1_input_atten = _ch0_input_atten; _ant1_preamp1 = _ch0_preamp1; _ant1_preamp2 = _ch0_preamp2; _ant1_lb_preamp_presel = _ch0_lb_preamp_presel; break; case twinrx_ctrl::ANT1_SHARED: if ((_ch0_input_atten != _ch1_input_atten) or (_ch0_preamp1 != _ch1_preamp1) or (_ch0_preamp2 != _ch1_preamp2) or (_ch0_lb_preamp_presel != _ch1_lb_preamp_presel)) { UHD_MSG(warning) << "incompatible gain settings for antenna sharing. temporarily using Ch0 settings for Ch1."; } _ant0_input_atten = _ch0_input_atten; _ant0_preamp1 = _ch0_preamp1; _ant0_preamp2 = _ch0_preamp2; _ant0_lb_preamp_presel = _ch0_lb_preamp_presel; _ant1_input_atten = 0; _ant1_preamp1 = twinrx_ctrl::PREAMP_BYPASS; _ant1_preamp2 = false; _ant1_lb_preamp_presel = false; break; case twinrx_ctrl::ANT2_SHARED: if ((_ch0_input_atten != _ch1_input_atten) or (_ch0_preamp1 != _ch1_preamp1) or (_ch0_preamp2 != _ch1_preamp2) or (_ch0_lb_preamp_presel != _ch1_lb_preamp_presel)) { UHD_MSG(warning) << "incompatible gain settings for antenna sharing. temporarily using Ch0 settings for Ch1."; } _ant1_input_atten = _ch0_input_atten; _ant1_preamp1 = _ch0_preamp1; _ant1_preamp2 = _ch0_preamp2; _ant1_lb_preamp_presel = _ch0_lb_preamp_presel; _ant0_input_atten = 0; _ant0_preamp1 = twinrx_ctrl::PREAMP_BYPASS; _ant0_preamp2 = false; _ant0_lb_preamp_presel = false; break; default: _ant0_input_atten = 0; _ant0_preamp1 = twinrx_ctrl::PREAMP_BYPASS; _ant0_preamp2 = false; _ant0_lb_preamp_presel = false; _ant1_input_atten = 0; _ant1_preamp1 = twinrx_ctrl::PREAMP_BYPASS; _ant1_preamp2 = false; _ant1_lb_preamp_presel = false; break; } } /*!--------------------------------------------------------- * twinrx_settings_expert::resolve * --------------------------------------------------------- */ const bool twinrx_settings_expert::FORCE_COMMIT = false; void twinrx_settings_expert::resolve() { for (size_t i = 0; i < 2; i++) { ch_settings& ch_set = (i == 1) ? _ch1 : _ch0; twinrx_ctrl::channel_t ch = (i == 1) ? twinrx_ctrl::CH2 : twinrx_ctrl::CH1; _ctrl->set_chan_enabled(ch, ch_set.chan_enabled, FORCE_COMMIT); _ctrl->set_preamp1(ch, ch_set.preamp1, FORCE_COMMIT); _ctrl->set_preamp2(ch, ch_set.preamp2, FORCE_COMMIT); _ctrl->set_lb_preamp_preselector(ch, ch_set.lb_preamp_presel, FORCE_COMMIT); _ctrl->set_signal_path(ch, ch_set.signal_path, FORCE_COMMIT); _ctrl->set_lb_preselector(ch, ch_set.lb_presel, FORCE_COMMIT); _ctrl->set_hb_preselector(ch, ch_set.hb_presel, FORCE_COMMIT); _ctrl->set_input_atten(ch, ch_set.input_atten, FORCE_COMMIT); _ctrl->set_lb_atten(ch, ch_set.lb_atten, FORCE_COMMIT); _ctrl->set_hb_atten(ch, ch_set.hb_atten, FORCE_COMMIT); _ctrl->set_lo1_source(ch, ch_set.lo1_source, FORCE_COMMIT); _ctrl->set_lo2_source(ch, ch_set.lo2_source, FORCE_COMMIT); } _resolve_lox_freq(STAGE_LO1, _ch0.lo1_freq_d, _ch1.lo1_freq_d, _ch0.lo1_freq_c, _ch1.lo1_freq_c, _ch0.lo1_source, _ch1.lo1_source, _lo1_synth0_mapping, _lo1_synth1_mapping, _lo1_hopping_enabled); _resolve_lox_freq(STAGE_LO2, _ch0.lo2_freq_d, _ch1.lo2_freq_d, _ch0.lo2_freq_c, _ch1.lo2_freq_c, _ch0.lo2_source, _ch1.lo2_source, _lo2_synth0_mapping, _lo2_synth1_mapping, _lo2_hopping_enabled); _ctrl->set_lo1_export_source(_lo1_export_src, FORCE_COMMIT); _ctrl->set_lo2_export_source(_lo2_export_src, FORCE_COMMIT); _ctrl->set_antenna_mapping(_ant_mapping, FORCE_COMMIT); //TODO: Re-enable this when we support this mode //_ctrl->set_crossover_cal_mode(_cal_mode, FORCE_COMMIT); _ctrl->commit(); } void twinrx_settings_expert::_resolve_lox_freq( lo_stage_t lo_stage, uhd::experts::data_reader_t& ch0_freq_d, uhd::experts::data_reader_t& ch1_freq_d, uhd::experts::data_writer_t& ch0_freq_c, uhd::experts::data_writer_t& ch1_freq_c, twinrx_ctrl::lo_source_t ch0_lo_source, twinrx_ctrl::lo_source_t ch1_lo_source, lo_synth_mapping_t synth0_mapping, lo_synth_mapping_t synth1_mapping, bool hopping_enabled) { if (ch0_lo_source == twinrx_ctrl::LO_EXTERNAL) { // If the LO is external then we don't need to program any synthesizers ch0_freq_c = ch0_freq_d; } else { // When in hopping mode, only attempt to write the LO frequency if it is actually // dirty to avoid reconfiguring the LO if it is being "double-buffered". If not // hopping, then always write the frequency because other inputs might require // an LO re-commit const bool freq_update_request = (not hopping_enabled) or ch0_freq_d.is_dirty(); if (synth0_mapping == MAPPING_CH0 and freq_update_request) { ch0_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH1, ch0_freq_d); } else if (synth1_mapping == MAPPING_CH0 and freq_update_request) { ch0_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH2, ch0_freq_d); } else if (synth0_mapping == MAPPING_SHARED or synth1_mapping == MAPPING_SHARED) { // If any synthesizer is being shared then we are not in hopping mode twinrx_ctrl::channel_t ch = (synth0_mapping == MAPPING_SHARED) ? twinrx_ctrl::CH1 : twinrx_ctrl::CH2; ch0_freq_c = _set_lox_synth_freq(lo_stage, ch, ch0_freq_d); ch1_freq_c = ch0_freq_c; } } if (ch1_lo_source == twinrx_ctrl::LO_EXTERNAL) { // If the LO is external then we don't need to program any synthesizers ch1_freq_c = ch1_freq_d; } else { // When in hopping mode, only attempt to write the LO frequency if it is actually // dirty to avoid reconfiguring the LO if it is being "double-buffered". If not // hopping, then always write the frequency because other inputs might require // an LO re-commit const bool freq_update_request = (not hopping_enabled) or ch1_freq_d.is_dirty(); // As an additional layer of protection from unnecessarily committing the LO, check // if the frequency has actually changed. if (synth0_mapping == MAPPING_CH1 and freq_update_request) { ch1_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH1, ch1_freq_d); } else if (synth1_mapping == MAPPING_CH1 and freq_update_request) { ch1_freq_c = _set_lox_synth_freq(lo_stage, twinrx_ctrl::CH2, ch1_freq_d); } else if (synth0_mapping == MAPPING_SHARED or synth1_mapping == MAPPING_SHARED) { // If any synthesizer is being shared then we are not in hopping mode twinrx_ctrl::channel_t ch = (synth0_mapping == MAPPING_SHARED) ? twinrx_ctrl::CH1 : twinrx_ctrl::CH2; ch0_freq_c = _set_lox_synth_freq(lo_stage, ch, ch0_freq_d); ch1_freq_c = ch0_freq_c; } } } double twinrx_settings_expert::_set_lox_synth_freq(lo_stage_t stage, twinrx_ctrl::channel_t ch, double freq) { lo_freq_cache_t* freq_cache = NULL; if (stage == STAGE_LO1) { freq_cache = (ch == twinrx_ctrl::CH1) ? &_cached_lo1_synth0_freq : &_cached_lo1_synth1_freq; } else if (stage == STAGE_LO2) { freq_cache = (ch == twinrx_ctrl::CH1) ? &_cached_lo2_synth0_freq : &_cached_lo2_synth1_freq; } else { throw uhd::assertion_error("Invalid LO stage"); } // Check if the frequency has actually changed before configuring synthesizers double coerced_freq = 0.0; if (freq_cache->desired != freq) { if (stage == STAGE_LO1) { coerced_freq = _ctrl->set_lo1_synth_freq(ch, freq, FORCE_COMMIT); } else { coerced_freq = _ctrl->set_lo2_synth_freq(ch, freq, FORCE_COMMIT); } freq_cache->desired = rf_freq_ppm_t(freq); freq_cache->coerced = coerced_freq; } else { coerced_freq = freq_cache->coerced; } return coerced_freq; }