// // Copyright 2015 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include "twinrx_ctrl.hpp" #include "adf435x.hpp" #include "adf5355.hpp" using namespace uhd; using namespace usrp; using namespace dboard::twinrx; typedef twinrx_cpld_regmap rm; static uint32_t bool2bin(bool x) { return x ? 1 : 0; } static const double TWINRX_DESIRED_REFERENCE_FREQ = 50e6; class twinrx_ctrl_impl : public twinrx_ctrl { public: twinrx_ctrl_impl( dboard_iface::sptr db_iface, twinrx_gpio::sptr gpio_iface, twinrx_cpld_regmap::sptr cpld_regmap ) : _db_iface(db_iface), _gpio_iface(gpio_iface), _cpld_regs(cpld_regmap) { //Turn on switcher and wait for power good _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 1); size_t timeout_ms = 100; while (_gpio_iface->get_field(twinrx_gpio::FIELD_SWPS_PWR_GOOD) == 0) { boost::this_thread::sleep(boost::posix_time::microsec(1000)); if (--timeout_ms == 0) { throw uhd::runtime_error("power supply failure"); } } //Initialize synthesizer objects _lo1_iface[size_t(CH1)] = adf5355_iface::make( boost::bind(&twinrx_ctrl_impl::_write_lo_spi, this, dboard_iface::UNIT_TX, _1)); _lo1_iface[size_t(CH2)] = adf5355_iface::make( boost::bind(&twinrx_ctrl_impl::_write_lo_spi, this, dboard_iface::UNIT_TX, _1)); _lo2_iface[size_t(CH1)] = adf435x_iface::make_adf4351( boost::bind(&twinrx_ctrl_impl::_write_lo_spi, this, dboard_iface::UNIT_RX, _1)); _lo2_iface[size_t(CH2)] = adf435x_iface::make_adf4351( boost::bind(&twinrx_ctrl_impl::_write_lo_spi, this, dboard_iface::UNIT_RX, _1)); // Assert synthesizer chip enables _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH1, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH2, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH1, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH2, 1); //Initialize default state set_chan_enabled(BOTH, false, false); set_preamp1(BOTH, PREAMP_BYPASS, false); set_preamp2(BOTH, false, false); set_lb_preamp_preselector(BOTH, false, false); set_signal_path(BOTH, PATH_LOWBAND, false); set_lb_preselector(BOTH, PRESEL_PATH3, false); set_hb_preselector(BOTH, PRESEL_PATH1, false); set_input_atten(BOTH, 31, false); set_lb_atten(BOTH, 31, false); set_hb_atten(BOTH, 31, false); set_lo1_source(BOTH, LO_INTERNAL, false); set_lo2_source(BOTH, LO_INTERNAL, false); set_lo1_export_source(LO_EXPORT_DISABLED, false); set_lo2_export_source(LO_EXPORT_DISABLED, false); set_antenna_mapping(ANTX_NATIVE, false); set_crossover_cal_mode(CAL_DISABLED, false); commit(); //Initialize clocks and LO bool found_rate = false; for(double rate: _db_iface->get_clock_rates(dboard_iface::UNIT_TX)) { found_rate |= uhd::math::frequencies_are_equal(rate, TWINRX_DESIRED_REFERENCE_FREQ); } for(double rate: _db_iface->get_clock_rates(dboard_iface::UNIT_RX)) { found_rate |= uhd::math::frequencies_are_equal(rate, TWINRX_DESIRED_REFERENCE_FREQ); } if (not found_rate) { throw uhd::runtime_error("TwinRX not supported on this motherboard"); } _db_iface->set_clock_rate(dboard_iface::UNIT_TX, TWINRX_DESIRED_REFERENCE_FREQ); _db_iface->set_clock_rate(dboard_iface::UNIT_RX, TWINRX_DESIRED_REFERENCE_FREQ); _db_iface->set_clock_enabled(dboard_iface::UNIT_TX, true); _db_iface->set_clock_enabled(dboard_iface::UNIT_RX, true); for (size_t i = 0; i < NUM_CHANS; i++) { _config_lo1_route(i==0?LO_CONFIG_CH1:LO_CONFIG_CH2); _config_lo2_route(i==0?LO_CONFIG_CH1:LO_CONFIG_CH2); _lo1_iface[i]->set_output_power(adf5355_iface::OUTPUT_POWER_5DBM); _lo1_iface[i]->set_reference_freq(TWINRX_DESIRED_REFERENCE_FREQ); // Divided feedback did not appear to be correctly implemented during bringup. Necessary for phase resync // _lo1_iface[i]->set_feedback_select(adf5355_iface::FB_SEL_DIVIDED); _lo1_iface[i]->set_muxout_mode(adf5355_iface::MUXOUT_DLD); _lo1_iface[i]->set_frequency(3e9, 1.0e3); _lo2_iface[i]->set_feedback_select(adf435x_iface::FB_SEL_DIVIDED); _lo2_iface[i]->set_output_power(adf435x_iface::OUTPUT_POWER_5DBM); _lo2_iface[i]->set_reference_freq(TWINRX_DESIRED_REFERENCE_FREQ); _lo2_iface[i]->set_muxout_mode(adf435x_iface::MUXOUT_DLD); _lo1_iface[i]->commit(); _lo2_iface[i]->commit(); } _config_lo1_route(LO_CONFIG_NONE); _config_lo2_route(LO_CONFIG_NONE); } ~twinrx_ctrl_impl() { UHD_SAFE_CALL( boost::lock_guard lock(_mutex); _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 0); ) } void commit() { boost::lock_guard lock(_mutex); _commit(); } void set_chan_enabled(channel_t ch, bool enabled, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::AMP_LO1_EN_CH1, bool2bin(enabled)); _cpld_regs->if0_reg3.set(rm::if0_reg3_t::IF1_IF2_EN_CH1, bool2bin(enabled)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH1, bool2bin(enabled)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::AMP_LO1_EN_CH2, bool2bin(enabled)); _cpld_regs->if0_reg4.set(rm::if0_reg4_t::IF1_IF2_EN_CH2, bool2bin(enabled)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH2, bool2bin(enabled)); } if (commit) _commit(); } void set_preamp1(channel_t ch, preamp_state_t value, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::SWPA1_CTL_CH1, bool2bin(value==PREAMP_HIGHBAND)); _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::SWPA2_CTRL_CH1, bool2bin(value==PREAMP_BYPASS)); _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::HB_PREAMP_EN_CH1, bool2bin(value==PREAMP_HIGHBAND)); _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::LB_PREAMP_EN_CH1, bool2bin(value==PREAMP_LOWBAND)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SWPA1_CTRL_CH2, bool2bin(value==PREAMP_HIGHBAND)); _cpld_regs->rf2_reg5.set(rm::rf2_reg5_t::SWPA2_CTRL_CH2, bool2bin(value==PREAMP_BYPASS)); _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::HB_PREAMP_EN_CH2, bool2bin(value==PREAMP_HIGHBAND)); _cpld_regs->rf2_reg6.set(rm::rf2_reg6_t::LB_PREAMP_EN_CH2, bool2bin(value==PREAMP_LOWBAND)); } if (commit) _commit(); } void set_preamp2(channel_t ch, bool enabled, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SWPA4_CTRL_CH1, bool2bin(not enabled)); _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::PREAMP2_EN_CH1, bool2bin(enabled)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SWPA4_CTRL_CH2, bool2bin(not enabled)); _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::PREAMP2_EN_CH2, bool2bin(enabled)); } if (commit) _commit(); } void set_lb_preamp_preselector(channel_t ch, bool enabled, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SWPA3_CTRL_CH1, bool2bin(not enabled)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::SWPA3_CTRL_CH2, bool2bin(not enabled)); } if (commit) _commit(); } void set_signal_path(channel_t ch, signal_path_t path, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::SW11_CTRL_CH1, bool2bin(path==PATH_LOWBAND)); _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::SW12_CTRL_CH1, bool2bin(path==PATH_LOWBAND)); _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::HB_PRESEL_PGA_EN_CH1, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW6_CTRL_CH1, bool2bin(path==PATH_LOWBAND)); _cpld_regs->if0_reg3.set(rm::if0_reg3_t::SW13_CTRL_CH1, bool2bin(path==PATH_LOWBAND)); _cpld_regs->if0_reg2.set(rm::if0_reg2_t::AMP_LB_IF1_EN_CH1, bool2bin(path==PATH_LOWBAND)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_HB_IF1_EN_CH1, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::AMP_HB_EN_CH1, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::AMP_LB_EN_CH1, bool2bin(path==PATH_LOWBAND)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SW11_CTRL_CH2, bool2bin(path==PATH_LOWBAND)); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW12_CTRL_CH2, bool2bin(path==PATH_LOWBAND)); _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::HB_PRESEL_PGA_EN_CH2, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW6_CTRL_CH2, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->if0_reg6.set(rm::if0_reg6_t::SW13_CTRL_CH2, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->if0_reg2.set(rm::if0_reg2_t::AMP_LB_IF1_EN_CH2, bool2bin(path==PATH_LOWBAND)); _cpld_regs->if0_reg6.set(rm::if0_reg6_t::AMP_HB_IF1_EN_CH2, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::AMP_HB_EN_CH2, bool2bin(path==PATH_HIGHBAND)); _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::AMP_LB_EN_CH2, bool2bin(path==PATH_LOWBAND)); } if (commit) _commit(); } void set_lb_preselector(channel_t ch, preselector_path_t path, bool commit = true) { boost::lock_guard lock(_mutex); uint32_t sw7val = 0, sw8val = 0; switch (path) { case PRESEL_PATH1: sw7val = 3; sw8val = 1; break; case PRESEL_PATH2: sw7val = 2; sw8val = 0; break; case PRESEL_PATH3: sw7val = 0; sw8val = 2; break; case PRESEL_PATH4: sw7val = 1; sw8val = 3; break; default: UHD_THROW_INVALID_CODE_PATH(); } if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW7_CTRL_CH1, sw7val); _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::SW8_CTRL_CH1, sw8val); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SW7_CTRL_CH2, sw7val); _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SW8_CTRL_CH2, sw8val); } if (commit) _commit(); } void set_hb_preselector(channel_t ch, preselector_path_t path, bool commit = true) { boost::lock_guard lock(_mutex); uint32_t sw9ch1val = 0, sw10ch1val = 0, sw9ch2val = 0, sw10ch2val = 0; switch (path) { case PRESEL_PATH1: sw9ch1val = 3; sw10ch1val = 0; sw9ch2val = 0; sw10ch2val = 3; break; case PRESEL_PATH2: sw9ch1val = 1; sw10ch1val = 2; sw9ch2val = 1; sw10ch2val = 1; break; case PRESEL_PATH3: sw9ch1val = 2; sw10ch1val = 1; sw9ch2val = 2; sw10ch2val = 2; break; case PRESEL_PATH4: sw9ch1val = 0; sw10ch1val = 3; sw9ch2val = 3; sw10ch2val = 0; break; default: UHD_THROW_INVALID_CODE_PATH(); } if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::SW9_CTRL_CH1, sw9ch1val); _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW10_CTRL_CH1, sw10ch1val); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW9_CTRL_CH2, sw9ch2val); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW10_CTRL_CH2, sw10ch2val); } if (commit) _commit(); } void set_input_atten(channel_t ch, uint8_t atten, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg0.set(rm::rf0_reg0_t::ATTEN_IN_CH1, atten&0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg4.set(rm::rf0_reg4_t::ATTEN_IN_CH2, atten&0x1F); } if (commit) _commit(); } void set_lb_atten(channel_t ch, uint8_t atten, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg0.set(rm::rf2_reg0_t::ATTEN_LB_CH1, atten&0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf2_reg4.set(rm::rf2_reg4_t::ATTEN_LB_CH2, atten&0x1F); } if (commit) _commit(); } void set_hb_atten(channel_t ch, uint8_t atten, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf1_reg0.set(rm::rf1_reg0_t::ATTEN_HB_CH1, atten&0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg4.set(rm::rf1_reg4_t::ATTEN_HB_CH2, atten&0x1F); } if (commit) _commit(); } void set_lo1_source(channel_t ch, lo_source_t source, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW14_CTRL_CH2, bool2bin(source!=LO_COMPANION)); _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW15_CTRL_CH1, bool2bin(source==LO_EXTERNAL)); _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW16_CTRL_CH1, bool2bin(source!=LO_INTERNAL)); _lo1_src[size_t(CH1)] = source; } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW14_CTRL_CH1, bool2bin(source==LO_COMPANION)); _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW15_CTRL_CH2, bool2bin(source!=LO_INTERNAL)); _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::SW16_CTRL_CH2, bool2bin(source==LO_INTERNAL)); _lo1_src[size_t(CH2)] = source; } if (commit) _commit(); } void set_lo2_source(channel_t ch, lo_source_t source, bool commit = true) { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->if0_reg0.set(rm::if0_reg0_t::SW19_CTRL_CH2, bool2bin(source==LO_COMPANION)); _cpld_regs->if0_reg1.set(rm::if0_reg1_t::SW20_CTRL_CH1, bool2bin(source==LO_COMPANION)); _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW21_CTRL_CH1, bool2bin(source==LO_INTERNAL)); _lo2_src[size_t(CH1)] = source; } if (ch == CH2 or ch == BOTH) { _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW19_CTRL_CH1, bool2bin(source==LO_EXTERNAL)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::SW20_CTRL_CH2, bool2bin(source==LO_INTERNAL||source==LO_DISABLED)); _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW21_CTRL_CH2, bool2bin(source==LO_INTERNAL)); _lo2_src[size_t(CH2)] = source; } if (commit) _commit(); } void set_lo1_export_source(lo_export_source_t source, bool commit = true) { boost::lock_guard lock(_mutex); //SW22 may conflict with the cal switch but this attr takes priority and we assume //that the cal switch is disabled (by disabling it!) _set_cal_mode(CAL_DISABLED, source); _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW23_CTRL, bool2bin(source!=LO_CH1_SYNTH)); _lo1_export = source; if (commit) _commit(); } void set_lo2_export_source(lo_export_source_t source, bool commit = true) { boost::lock_guard lock(_mutex); _cpld_regs->if0_reg7.set(rm::if0_reg7_t::SW24_CTRL_CH2, bool2bin(source==LO_CH2_SYNTH)); _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW25_CTRL, bool2bin(source!=LO_CH1_SYNTH)); _cpld_regs->if0_reg3.set(rm::if0_reg3_t::SW24_CTRL_CH1, bool2bin(source!=LO_CH1_SYNTH)); _lo2_export = source; if (commit) _commit(); } void set_antenna_mapping(antenna_mapping_t mapping, bool commit = true) { boost::lock_guard lock(_mutex); enum switch_path_t { CONNECT, TERM, EXPORT, IMPORT, SWAP }; switch_path_t path1, path2; switch (mapping) { case ANTX_NATIVE: path1 = CONNECT; path2 = CONNECT; break; case ANT1_SHARED: path1 = EXPORT; path2 = IMPORT; break; case ANT2_SHARED: path1 = IMPORT; path2 = EXPORT; break; case ANTX_SWAPPED: path1 = SWAP; path2 = SWAP; break; default: path1 = TERM; path2 = TERM; break; } _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::SW3_CTRL_CH1, bool2bin(path1==EXPORT||path1==SWAP)); _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW4_CTRL_CH1, bool2bin(!(path1==IMPORT||path1==SWAP))); _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW5_CTRL_CH1, bool2bin(path1==CONNECT)); _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SW3_CTRL_CH2, bool2bin(path2==EXPORT||path2==SWAP)); _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW4_CTRL_CH2, bool2bin(path2==IMPORT||path2==SWAP)); _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW5_CTRL_CH2, bool2bin(path2==CONNECT)); if (commit) _commit(); } void set_crossover_cal_mode(cal_mode_t cal_mode, bool commit = true) { boost::lock_guard lock(_mutex); if (_lo1_export == LO_CH1_SYNTH && cal_mode == CAL_CH2) { throw uhd::runtime_error("cannot enable cal crossover on CH2 when LO1 in CH1 is exported"); } if (_lo1_export == LO_CH2_SYNTH && cal_mode == CAL_CH1) { throw uhd::runtime_error("cannot enable cal crossover on CH1 when LO1 in CH2 is exported"); } _set_cal_mode(cal_mode, _lo1_export); if (commit) _commit(); } double set_lo1_synth_freq(channel_t ch, double freq, bool commit = true) { boost::lock_guard lock(_mutex); static const double RESOLUTION = 1e3; double coerced_freq = 0.0; if (ch == CH1 or ch == BOTH) { coerced_freq = _lo1_iface[size_t(CH1)]->set_frequency(freq, RESOLUTION, false); _lo1_freq[size_t(CH1)] = tune_freq_t(freq); } if (ch == CH2 or ch == BOTH) { coerced_freq = _lo1_iface[size_t(CH2)]->set_frequency(freq, RESOLUTION, false); _lo1_freq[size_t(CH2)] = tune_freq_t(freq); } if (commit) _commit(); return coerced_freq; } double set_lo2_synth_freq(channel_t ch, double freq, bool commit = true) { boost::lock_guard lock(_mutex); static const double PRESCALER_THRESH = 3.6e9; double coerced_freq = 0.0; if (ch == CH1 or ch == BOTH) { _lo2_iface[size_t(CH1)]->set_prescaler(freq > PRESCALER_THRESH ? adf435x_iface::PRESCALER_8_9 : adf435x_iface::PRESCALER_4_5); coerced_freq = _lo2_iface[size_t(CH1)]->set_frequency(freq, false, false); _lo2_freq[size_t(CH1)] = tune_freq_t(freq); } if (ch == CH2 or ch == BOTH) { _lo2_iface[size_t(CH2)]->set_prescaler(freq > PRESCALER_THRESH ? adf435x_iface::PRESCALER_8_9 : adf435x_iface::PRESCALER_4_5); coerced_freq = _lo2_iface[size_t(CH2)]->set_frequency(freq, false, false); _lo2_freq[size_t(CH2)] = tune_freq_t(freq); } if (commit) _commit(); return coerced_freq; } bool read_lo1_locked(channel_t ch) { boost::lock_guard lock(_mutex); bool locked = true; if (ch == CH1 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH1) == 1); } if (ch == CH2 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH2) == 1); } return locked; } bool read_lo2_locked(channel_t ch) { boost::lock_guard lock(_mutex); bool locked = true; if (ch == CH1 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH1) == 1); } if (ch == CH2 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH2) == 1); } return locked; } private: //Functions void _set_cal_mode(cal_mode_t cal_mode, lo_export_source_t lo1_export_src) { _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW17_CTRL_CH1, bool2bin(cal_mode!=CAL_CH1)); _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::SW17_CTRL_CH2, bool2bin(cal_mode!=CAL_CH2)); _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW18_CTRL_CH1, bool2bin(cal_mode!=CAL_CH1)); _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::SW18_CTRL_CH2, bool2bin(cal_mode!=CAL_CH2)); _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW22_CTRL_CH1, bool2bin((lo1_export_src!=LO_CH1_SYNTH)||(cal_mode==CAL_CH1))); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW22_CTRL_CH2, bool2bin((lo1_export_src!=LO_CH2_SYNTH)||(cal_mode==CAL_CH2))); } void _config_lo1_route(lo_config_route_t source) { //Route SPI LEs through CPLD (will not assert them) _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH1, bool2bin(source==LO_CONFIG_CH1||source==LO_CONFIG_BOTH)); _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH2, bool2bin(source==LO_CONFIG_CH2||source==LO_CONFIG_BOTH)); _cpld_regs->rf0_reg2.flush(); } void _config_lo2_route(lo_config_route_t source) { //Route SPI LEs through CPLD (will not assert them) _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH1, bool2bin(source==LO_CONFIG_CH1||source==LO_CONFIG_BOTH)); _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH2, bool2bin(source==LO_CONFIG_CH2||source==LO_CONFIG_BOTH)); _cpld_regs->if0_reg2.flush(); } void _write_lo_spi(dboard_iface::unit_t unit, const std::vector ®s) { for(uint32_t reg: regs) { spi_config_t spi_config = spi_config_t(spi_config_t::EDGE_RISE); spi_config.use_custom_divider = true; spi_config.divider = 67; _db_iface->write_spi(unit, spi_config, reg, 32); } } void _commit() { //Commit everything except the LO synthesizers _cpld_regs->flush(); // Disable unused LO synthesizers _lo1_enable[size_t(CH1)] = _lo1_src[size_t(CH1)] == LO_INTERNAL || _lo1_src[size_t(CH2)] == LO_COMPANION || _lo1_export == LO_CH1_SYNTH; _lo1_enable[size_t(CH2)] = _lo1_src[size_t(CH2)] == LO_INTERNAL || _lo1_src[size_t(CH1)] == LO_COMPANION || _lo1_export == LO_CH2_SYNTH; _lo2_enable[size_t(CH1)] = _lo2_src[size_t(CH1)] == LO_INTERNAL || _lo2_src[size_t(CH2)] == LO_COMPANION || _lo2_export == LO_CH1_SYNTH; _lo2_enable[size_t(CH2)] = _lo2_src[size_t(CH2)] == LO_INTERNAL || _lo2_src[size_t(CH1)] == LO_COMPANION || _lo2_export == LO_CH2_SYNTH; _lo1_iface[size_t(CH1)]->set_output_enable(adf5355_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH1)].get()); _lo1_iface[size_t(CH2)]->set_output_enable(adf5355_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH2)].get()); _lo2_iface[size_t(CH1)]->set_output_enable(adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH1)].get()); _lo2_iface[size_t(CH2)]->set_output_enable(adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH2)].get()); //Commit LO1 frequency // Commit Channel 1's settings to both channels simultaneously if the frequency is the same. bool simultaneous_commit_lo1 = _lo1_freq[size_t(CH1)].is_dirty() and _lo1_freq[size_t(CH2)].is_dirty() and _lo1_freq[size_t(CH1)].get() == _lo1_freq[size_t(CH2)].get() and _lo1_enable[size_t(CH1)].get() == _lo1_enable[size_t(CH2)].get(); if (simultaneous_commit_lo1) { _config_lo1_route(LO_CONFIG_BOTH); //Only commit one of the channels. The route LO_CONFIG_BOTH //will ensure that the LEs for both channels are enabled _lo1_iface[size_t(CH1)]->commit(); _lo1_freq[size_t(CH1)].mark_clean(); _lo1_freq[size_t(CH2)].mark_clean(); _lo1_enable[size_t(CH1)].mark_clean(); _lo1_enable[size_t(CH2)].mark_clean(); _config_lo1_route(LO_CONFIG_NONE); } else { if (_lo1_freq[size_t(CH1)].is_dirty() || _lo1_enable[size_t(CH1)].is_dirty()) { _config_lo1_route(LO_CONFIG_CH1); _lo1_iface[size_t(CH1)]->commit(); _lo1_freq[size_t(CH1)].mark_clean(); _lo1_enable[size_t(CH1)].mark_clean(); _config_lo1_route(LO_CONFIG_NONE); } if (_lo1_freq[size_t(CH2)].is_dirty() || _lo1_enable[size_t(CH2)].is_dirty()) { _config_lo1_route(LO_CONFIG_CH2); _lo1_iface[size_t(CH2)]->commit(); _lo1_freq[size_t(CH2)].mark_clean(); _lo1_enable[size_t(CH2)].mark_clean(); _config_lo1_route(LO_CONFIG_NONE); } } //Commit LO2 frequency bool simultaneous_commit_lo2 = _lo2_freq[size_t(CH1)].is_dirty() and _lo2_freq[size_t(CH2)].is_dirty() and _lo2_freq[size_t(CH1)].get() == _lo2_freq[size_t(CH2)].get() and _lo2_enable[size_t(CH1)].get() == _lo2_enable[size_t(CH2)].get(); if (simultaneous_commit_lo2) { _config_lo2_route(LO_CONFIG_BOTH); //Only commit one of the channels. The route LO_CONFIG_BOTH //will ensure that the LEs for both channels are enabled _lo2_iface[size_t(CH1)]->commit(); _lo2_freq[size_t(CH1)].mark_clean(); _lo2_freq[size_t(CH2)].mark_clean(); _lo2_enable[size_t(CH1)].mark_clean(); _lo2_enable[size_t(CH2)].mark_clean(); _config_lo2_route(LO_CONFIG_NONE); } else { if (_lo2_freq[size_t(CH1)].is_dirty() || _lo2_enable[size_t(CH1)].is_dirty()) { _config_lo2_route(LO_CONFIG_CH1); _lo2_iface[size_t(CH1)]->commit(); _lo2_freq[size_t(CH1)].mark_clean(); _lo2_enable[size_t(CH1)].mark_clean(); _config_lo2_route(LO_CONFIG_NONE); } if (_lo2_freq[size_t(CH2)].is_dirty() || _lo2_enable[size_t(CH2)].is_dirty()) { _config_lo2_route(LO_CONFIG_CH2); _lo2_iface[size_t(CH2)]->commit(); _lo2_freq[size_t(CH2)].mark_clean(); _lo2_enable[size_t(CH2)].mark_clean(); _config_lo2_route(LO_CONFIG_NONE); } } } private: //Members static const size_t NUM_CHANS = 2; struct tune_freq_t : public uhd::math::fp_compare::fp_compare_delta { tune_freq_t() : uhd::math::fp_compare::fp_compare_delta( 0.0, uhd::math::FREQ_COMPARISON_DELTA_HZ) {} tune_freq_t(double freq) : uhd::math::fp_compare::fp_compare_delta( freq, uhd::math::FREQ_COMPARISON_DELTA_HZ) {} }; boost::mutex _mutex; dboard_iface::sptr _db_iface; twinrx_gpio::sptr _gpio_iface; twinrx_cpld_regmap::sptr _cpld_regs; adf5355_iface::sptr _lo1_iface[NUM_CHANS]; adf435x_iface::sptr _lo2_iface[NUM_CHANS]; lo_source_t _lo1_src[NUM_CHANS]; lo_source_t _lo2_src[NUM_CHANS]; dirty_tracked _lo1_freq[NUM_CHANS]; dirty_tracked _lo2_freq[NUM_CHANS]; dirty_tracked _lo1_enable[NUM_CHANS]; dirty_tracked _lo2_enable[NUM_CHANS]; lo_export_source_t _lo1_export; lo_export_source_t _lo2_export; }; twinrx_ctrl::sptr twinrx_ctrl::make( dboard_iface::sptr db_iface, twinrx_gpio::sptr gpio_iface, twinrx_cpld_regmap::sptr cpld_regmap ) { return sptr(new twinrx_ctrl_impl(db_iface, gpio_iface, cpld_regmap)); }