//
// Copyright 2015-2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "twinrx_ctrl.hpp"
#include "twinrx_ids.hpp"
#include <uhdlib/usrp/common/adf435x.hpp>
#include <uhdlib/usrp/common/adf535x.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_call.hpp>
#include <chrono>
#include <thread>

using namespace uhd;
using namespace usrp;
using namespace dboard::twinrx;

namespace {
  typedef twinrx_cpld_regmap rm;

  typedef enum { LO1, LO2 } lo_t;

  inline uint32_t bool2bin(bool x) { return x ? 1 : 0; }

  const double TWINRX_DESIRED_REFERENCE_FREQ = 50e6;
  const double TWINRX_REV_AB_PFD_FREQ = 6.25e6;
  const double TWINRX_REV_C_PFD_FREQ = 12.5e6;
  const double TWINRX_SPI_CLOCK_FREQ = 3e6;
}

class twinrx_ctrl_impl : public twinrx_ctrl {
public:
    twinrx_ctrl_impl(
        dboard_iface::sptr db_iface,
        twinrx_gpio::sptr gpio_iface,
        twinrx_cpld_regmap::sptr cpld_regmap,
        const dboard_id_t rx_id
    ) : _db_iface(db_iface), _gpio_iface(gpio_iface), _cpld_regs(cpld_regmap)
    {
        // SPI configuration
        _spi_config.use_custom_divider = true;
        _spi_config.divider = std::ceil(_db_iface->get_codec_rate(dboard_iface::UNIT_TX) / TWINRX_SPI_CLOCK_FREQ);

        //Initialize dboard clocks
        bool found_rate = false;
        for(double rate:  _db_iface->get_clock_rates(dboard_iface::UNIT_TX)) {
            found_rate |= uhd::math::frequencies_are_equal(rate, TWINRX_DESIRED_REFERENCE_FREQ);
        }
        for(double rate:  _db_iface->get_clock_rates(dboard_iface::UNIT_RX)) {
            found_rate |= uhd::math::frequencies_are_equal(rate, TWINRX_DESIRED_REFERENCE_FREQ);
        }
        if (not found_rate) {
            throw uhd::runtime_error("TwinRX not supported on this motherboard");
        }
        _db_iface->set_clock_rate(dboard_iface::UNIT_TX, TWINRX_DESIRED_REFERENCE_FREQ);
        _db_iface->set_clock_rate(dboard_iface::UNIT_RX, TWINRX_DESIRED_REFERENCE_FREQ);

        _db_iface->set_clock_enabled(dboard_iface::UNIT_TX, true);
        _db_iface->set_clock_enabled(dboard_iface::UNIT_RX, true);

        //Initialize default switch and attenuator states
        set_chan_enabled(BOTH, false, false);
        set_preamp1(BOTH, PREAMP_BYPASS, false);
        set_preamp2(BOTH, false, false);
        set_lb_preamp_preselector(BOTH, false, false);
        set_signal_path(BOTH, PATH_LOWBAND, false);
        set_lb_preselector(BOTH, PRESEL_PATH3, false);
        set_hb_preselector(BOTH, PRESEL_PATH1, false);
        set_input_atten(BOTH, 31, false);
        set_lb_atten(BOTH, 31, false);
        set_hb_atten(BOTH, 31, false);
        set_lo1_source(BOTH, LO_INTERNAL, false);
        set_lo2_source(BOTH, LO_INTERNAL, false);
        set_lo1_export_source(LO_EXPORT_DISABLED, false);
        set_lo2_export_source(LO_EXPORT_DISABLED, false);
        set_antenna_mapping(ANTX_NATIVE, false);
        set_crossover_cal_mode(CAL_DISABLED, false);
        _cpld_regs->flush();

        //Turn on power and wait for power good
        _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 1);
        size_t timeout_ms = 100;
        while (_gpio_iface->get_field(twinrx_gpio::FIELD_SWPS_PWR_GOOD) == 0) {
            std::this_thread::sleep_for(std::chrono::microseconds(1000));
            if (--timeout_ms == 0) {
                throw uhd::runtime_error("power supply failure");
            }
        }

        // Assert synthesizer chip enables
        _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH1, 1);
        _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH2, 1);
        _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH1, 1);
        _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH2, 1);

        //Initialize synthesizers
        for (size_t i = 0; i < NUM_CHANS; i++) {
            // LO1
            if (rx_id == twinrx::TWINRX_REV_C_ID) {
                _lo1_iface[i] = adf535x_iface::make_adf5356(
                    [this](const std::vector<uint32_t>& regs) {
                        _write_lo_spi(dboard_iface::UNIT_TX, regs);
                    },
                    [this](uint32_t microseconds) {
                        _db_iface->sleep(boost::chrono::microseconds(microseconds));
                    }
                );
                _lo1_iface[i]->set_pfd_freq(TWINRX_REV_C_PFD_FREQ);
            } else {
                _lo1_iface[i] = adf535x_iface::make_adf5355(
                    [this](const std::vector<uint32_t>& regs) {
                        _write_lo_spi(dboard_iface::UNIT_TX, regs);
                    },
                    [this](uint32_t microseconds) {
                        _db_iface->sleep(boost::chrono::microseconds(microseconds));
                    }
                );
                _lo1_iface[i]->set_pfd_freq(TWINRX_REV_AB_PFD_FREQ);
            }
            _lo1_iface[i]->set_output_power(adf535x_iface::OUTPUT_POWER_5DBM);
            _lo1_iface[i]->set_reference_freq(TWINRX_DESIRED_REFERENCE_FREQ);
            _lo1_iface[i]->set_muxout_mode(adf535x_iface::MUXOUT_DLD);
            _lo1_iface[i]->set_frequency(3e9, 1.0e3);

            // LO2
            _lo2_iface[i] = adf435x_iface::make_adf4351(
                [this](const std::vector<uint32_t>& regs) {
                    _write_lo_spi(dboard_iface::UNIT_RX, regs);
                }
            );
            _lo2_iface[i]->set_feedback_select(adf435x_iface::FB_SEL_DIVIDED);
            _lo2_iface[i]->set_output_power(adf435x_iface::OUTPUT_POWER_5DBM);
            _lo2_iface[i]->set_reference_freq(TWINRX_DESIRED_REFERENCE_FREQ);
            _lo2_iface[i]->set_muxout_mode(adf435x_iface::MUXOUT_DLD);
        }
        commit();
    }

    ~twinrx_ctrl_impl()
    {
        UHD_SAFE_CALL(
            boost::lock_guard<boost::mutex> lock(_mutex);
            _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 0);
        )
    }

    void commit()
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        _commit();
    }

    void set_chan_enabled(channel_t ch, bool enabled, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->if0_reg3.set(rm::if0_reg3_t::IF1_IF2_EN_CH1, bool2bin(enabled));
            _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH1, bool2bin(enabled));
            _chan_enabled[size_t(CH1)] = enabled;
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::AMP_LO1_EN_CH2, bool2bin(enabled));
            _cpld_regs->if0_reg4.set(rm::if0_reg4_t::IF1_IF2_EN_CH2, bool2bin(enabled));
            _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH2, bool2bin(enabled));
            _chan_enabled[size_t(CH2)] = enabled;
        }
        _set_lo1_amp(_chan_enabled[size_t(CH1)], _chan_enabled[size_t(CH2)], _lo1_src[size_t(CH2)]);
        if (commit) _commit();
    }

    void set_preamp1(channel_t ch, preamp_state_t value, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::SWPA1_CTL_CH1, bool2bin(value==PREAMP_HIGHBAND));
            _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::SWPA2_CTRL_CH1, bool2bin(value==PREAMP_BYPASS));
            _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::HB_PREAMP_EN_CH1, bool2bin(value==PREAMP_HIGHBAND));
            _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::LB_PREAMP_EN_CH1, bool2bin(value==PREAMP_LOWBAND));
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SWPA1_CTRL_CH2, bool2bin(value==PREAMP_HIGHBAND));
            _cpld_regs->rf2_reg5.set(rm::rf2_reg5_t::SWPA2_CTRL_CH2, bool2bin(value==PREAMP_BYPASS));
            _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::HB_PREAMP_EN_CH2, bool2bin(value==PREAMP_HIGHBAND));
            _cpld_regs->rf2_reg6.set(rm::rf2_reg6_t::LB_PREAMP_EN_CH2, bool2bin(value==PREAMP_LOWBAND));
        }
        if (commit) _commit();
    }

    void set_preamp2(channel_t ch, bool enabled, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SWPA4_CTRL_CH1, bool2bin(not enabled));
            _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::PREAMP2_EN_CH1, bool2bin(enabled));
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SWPA4_CTRL_CH2, bool2bin(not enabled));
            _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::PREAMP2_EN_CH2, bool2bin(enabled));
        }
        if (commit) _commit();
    }

    void set_lb_preamp_preselector(channel_t ch, bool enabled, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SWPA3_CTRL_CH1, bool2bin(not enabled));
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg1.set(rm::rf0_reg1_t::SWPA3_CTRL_CH2, bool2bin(not enabled));
        }
        if (commit) _commit();
    }

    void set_signal_path(channel_t ch, signal_path_t path, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::SW11_CTRL_CH1, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::SW12_CTRL_CH1, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::HB_PRESEL_PGA_EN_CH1, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW6_CTRL_CH1, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->if0_reg3.set(rm::if0_reg3_t::SW13_CTRL_CH1, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->if0_reg2.set(rm::if0_reg2_t::AMP_LB_IF1_EN_CH1, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_HB_IF1_EN_CH1, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::AMP_HB_EN_CH1, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf2_reg2.set(rm::rf2_reg2_t::AMP_LB_EN_CH1, bool2bin(path==PATH_LOWBAND));
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SW11_CTRL_CH2, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW12_CTRL_CH2, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->rf1_reg2.set(rm::rf1_reg2_t::HB_PRESEL_PGA_EN_CH2, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW6_CTRL_CH2, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->if0_reg6.set(rm::if0_reg6_t::SW13_CTRL_CH2, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->if0_reg2.set(rm::if0_reg2_t::AMP_LB_IF1_EN_CH2, bool2bin(path==PATH_LOWBAND));
            _cpld_regs->if0_reg6.set(rm::if0_reg6_t::AMP_HB_IF1_EN_CH2, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::AMP_HB_EN_CH2, bool2bin(path==PATH_HIGHBAND));
            _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::AMP_LB_EN_CH2, bool2bin(path==PATH_LOWBAND));
        }
        if (commit) _commit();
    }

    void set_lb_preselector(channel_t ch, preselector_path_t path, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        uint32_t sw7val = 0, sw8val = 0;
        switch (path) {
            case PRESEL_PATH1: sw7val = 3; sw8val = 1; break;
            case PRESEL_PATH2: sw7val = 2; sw8val = 0; break;
            case PRESEL_PATH3: sw7val = 0; sw8val = 2; break;
            case PRESEL_PATH4: sw7val = 1; sw8val = 3; break;
            default: UHD_THROW_INVALID_CODE_PATH();
        }
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW7_CTRL_CH1, sw7val);
            _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::SW8_CTRL_CH1, sw8val);
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SW7_CTRL_CH2, sw7val);
            _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SW8_CTRL_CH2, sw8val);
        }
        if (commit) _commit();
    }

    void set_hb_preselector(channel_t ch, preselector_path_t path, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        uint32_t sw9ch1val = 0, sw10ch1val = 0, sw9ch2val = 0, sw10ch2val = 0;
        switch (path) {
            case PRESEL_PATH1: sw9ch1val = 3; sw10ch1val = 0; sw9ch2val = 0; sw10ch2val = 3; break;
            case PRESEL_PATH2: sw9ch1val = 1; sw10ch1val = 2; sw9ch2val = 1; sw10ch2val = 1; break;
            case PRESEL_PATH3: sw9ch1val = 2; sw10ch1val = 1; sw9ch2val = 2; sw10ch2val = 2; break;
            case PRESEL_PATH4: sw9ch1val = 0; sw10ch1val = 3; sw9ch2val = 3; sw10ch2val = 0; break;
            default: UHD_THROW_INVALID_CODE_PATH();
        }
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::SW9_CTRL_CH1, sw9ch1val);
            _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW10_CTRL_CH1, sw10ch1val);
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW9_CTRL_CH2, sw9ch2val);
            _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW10_CTRL_CH2, sw10ch2val);
        }
        if (commit) _commit();

    }

    void set_input_atten(channel_t ch, uint8_t atten, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf0_reg0.set(rm::rf0_reg0_t::ATTEN_IN_CH1, atten&0x1F);
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf0_reg4.set(rm::rf0_reg4_t::ATTEN_IN_CH2, atten&0x1F);
        }
        if (commit) _commit();
    }

    void set_lb_atten(channel_t ch, uint8_t atten, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf2_reg0.set(rm::rf2_reg0_t::ATTEN_LB_CH1, atten&0x1F);
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf2_reg4.set(rm::rf2_reg4_t::ATTEN_LB_CH2, atten&0x1F);
        }
        if (commit) _commit();
    }

    void set_hb_atten(channel_t ch, uint8_t atten, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf1_reg0.set(rm::rf1_reg0_t::ATTEN_HB_CH1, atten&0x1F);
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf1_reg4.set(rm::rf1_reg4_t::ATTEN_HB_CH2, atten&0x1F);
        }
        if (commit) _commit();
    }

    void set_lo1_source(channel_t ch, lo_source_t source, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW14_CTRL_CH2, bool2bin(source!=LO_COMPANION));
            _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW15_CTRL_CH1, bool2bin(source==LO_EXTERNAL||source==LO_REIMPORT));
            _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW16_CTRL_CH1, bool2bin(source!=LO_INTERNAL));
            _lo1_src[size_t(CH1)] = source;
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW14_CTRL_CH1, bool2bin(source==LO_COMPANION));
            _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW15_CTRL_CH2, bool2bin(source!=LO_INTERNAL));
            _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::SW16_CTRL_CH2, bool2bin(source==LO_INTERNAL));
            _lo1_src[size_t(CH2)] = source;
            _set_lo1_amp(_chan_enabled[size_t(CH1)], _chan_enabled[size_t(CH2)], _lo1_src[size_t(CH2)]);
        }
        if (commit) _commit();
    }

    void set_lo2_source(channel_t ch, lo_source_t source, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (ch == CH1 or ch == BOTH) {
            _cpld_regs->if0_reg0.set(rm::if0_reg0_t::SW19_CTRL_CH2, bool2bin(source==LO_COMPANION));
            _cpld_regs->if0_reg1.set(rm::if0_reg1_t::SW20_CTRL_CH1, bool2bin(source==LO_COMPANION));
            _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW21_CTRL_CH1, bool2bin(source==LO_INTERNAL));
            _lo2_src[size_t(CH1)] = source;
        }
        if (ch == CH2 or ch == BOTH) {
            _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW19_CTRL_CH1, bool2bin(source==LO_EXTERNAL||source==LO_REIMPORT));
            _cpld_regs->if0_reg0.set(rm::if0_reg0_t::SW20_CTRL_CH2, bool2bin(source==LO_INTERNAL||source==LO_DISABLED));
            _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW21_CTRL_CH2, bool2bin(source==LO_INTERNAL));
            _lo2_src[size_t(CH2)] = source;
        }
        if (commit) _commit();
    }

    void set_lo1_export_source(lo_export_source_t source, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        //SW22 may conflict with the cal switch but this attr takes priority and we assume
        //that the cal switch is disabled (by disabling it!)
        _set_cal_mode(CAL_DISABLED, source);
        _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW23_CTRL, bool2bin(source!=LO_CH1_SYNTH));
        _lo1_export = source;

        if (commit) _commit();
    }

    void set_lo2_export_source(lo_export_source_t source, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        _cpld_regs->if0_reg7.set(rm::if0_reg7_t::SW24_CTRL_CH2, bool2bin(source==LO_CH2_SYNTH));
        _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW25_CTRL, bool2bin(source!=LO_CH1_SYNTH));
        _cpld_regs->if0_reg3.set(rm::if0_reg3_t::SW24_CTRL_CH1, bool2bin(source!=LO_CH1_SYNTH));
        _lo2_export = source;

        if (commit) _commit();
    }

    void set_antenna_mapping(antenna_mapping_t mapping, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);

        enum switch_path_t { CONNECT, TERM, EXPORT, IMPORT, SWAP };
        switch_path_t path1, path2;

        switch (mapping) {
        case ANTX_NATIVE:
            path1 = CONNECT; path2 = CONNECT; break;
        case ANT1_SHARED:
            path1 = EXPORT;  path2 = IMPORT;  break;
        case ANT2_SHARED:
            path1 = IMPORT;  path2 = EXPORT;  break;
        case ANTX_SWAPPED:
            path1 = SWAP;    path2 = SWAP;    break;
        default:
            path1 = TERM;    path2 = TERM;    break;
        }

        _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::SW3_CTRL_CH1, bool2bin(path1==EXPORT||path1==SWAP));
        _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW4_CTRL_CH1, bool2bin(!(path1==IMPORT||path1==SWAP)));
        _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::SW5_CTRL_CH1, bool2bin(path1==CONNECT));
        _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SW3_CTRL_CH2, bool2bin(path2==EXPORT||path2==SWAP));
        _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW4_CTRL_CH2, bool2bin(path2==IMPORT||path2==SWAP));
        _cpld_regs->rf0_reg6.set(rm::rf0_reg6_t::SW5_CTRL_CH2, bool2bin(path2==CONNECT));

        if (commit) _commit();
    }

    void set_crossover_cal_mode(cal_mode_t cal_mode, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        if (_lo1_export == LO_CH1_SYNTH && cal_mode == CAL_CH2) {
            throw uhd::runtime_error("cannot enable cal crossover on CH2 when LO1 in CH1 is exported");
        }
        if (_lo1_export == LO_CH2_SYNTH && cal_mode == CAL_CH1) {
            throw uhd::runtime_error("cannot enable cal crossover on CH1 when LO1 in CH2 is exported");
        }
        _set_cal_mode(cal_mode, _lo1_export);

        if (commit) _commit();
    }

    double set_lo1_synth_freq(channel_t ch, double freq, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        static const double RESOLUTION = 1e3;

        double coerced_freq = 0.0;
        if (ch == CH1 or ch == BOTH) {
            coerced_freq = _lo1_iface[size_t(CH1)]->set_frequency(freq, RESOLUTION, false);
            _lo1_freq[size_t(CH1)] = tune_freq_t(freq);
        }
        if (ch == CH2 or ch == BOTH) {
            coerced_freq = _lo1_iface[size_t(CH2)]->set_frequency(freq, RESOLUTION, false);
            _lo1_freq[size_t(CH2)] = tune_freq_t(freq);
        }

        if (commit) _commit();
        return coerced_freq;
    }

    double set_lo2_synth_freq(channel_t ch, double freq, bool commit = true)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        static const double PRESCALER_THRESH = 3.6e9;

        double coerced_freq = 0.0;
        if (ch == CH1 or ch == BOTH) {
            _lo2_iface[size_t(CH1)]->set_prescaler(freq > PRESCALER_THRESH ?
                adf435x_iface::PRESCALER_8_9 : adf435x_iface::PRESCALER_4_5);
            coerced_freq = _lo2_iface[size_t(CH1)]->set_frequency(freq, false, false);
            _lo2_freq[size_t(CH1)] = tune_freq_t(freq);
        }
        if (ch == CH2 or ch == BOTH) {
            _lo2_iface[size_t(CH2)]->set_prescaler(freq > PRESCALER_THRESH ?
                adf435x_iface::PRESCALER_8_9 : adf435x_iface::PRESCALER_4_5);
            coerced_freq = _lo2_iface[size_t(CH2)]->set_frequency(freq, false, false);
            _lo2_freq[size_t(CH2)] = tune_freq_t(freq);
        }

        if (commit) _commit();
        return coerced_freq;
    }

    bool read_lo1_locked(channel_t ch)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);

        bool locked = true;
        if (ch == CH1 or ch == BOTH) {
            locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH1) == 1);
        }
        if (ch == CH2 or ch == BOTH) {
            locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH2) == 1);
        }
        return locked;
    }

    bool read_lo2_locked(channel_t ch)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);

        bool locked = true;
        if (ch == CH1 or ch == BOTH) {
            locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH1) == 1);
        }
        if (ch == CH2 or ch == BOTH) {
            locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH2) == 1);
        }
        return locked;
    }

private:    //Functions
    void _set_cal_mode(cal_mode_t cal_mode, lo_export_source_t lo1_export_src)
    {
        _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW17_CTRL_CH1, bool2bin(cal_mode!=CAL_CH1));
        _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::SW17_CTRL_CH2, bool2bin(cal_mode!=CAL_CH2));
        _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::SW18_CTRL_CH1, bool2bin(cal_mode!=CAL_CH1));
        _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::SW18_CTRL_CH2, bool2bin(cal_mode!=CAL_CH2));
        _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW22_CTRL_CH1, bool2bin((lo1_export_src!=LO_CH1_SYNTH)||(cal_mode==CAL_CH1)));
        _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW22_CTRL_CH2, bool2bin((lo1_export_src!=LO_CH2_SYNTH)||(cal_mode==CAL_CH2)));
    }

    void _set_lo1_amp(bool ch1_enabled, bool ch2_enabled, lo_source_t ch2_lo1_src)
    {
        // AMP_LO1_EN_CH1 also controls the amp for the external LO1 port,
        // which could be in use by ch2
        _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::AMP_LO1_EN_CH1, bool2bin(
            ch1_enabled || (ch2_enabled && (ch2_lo1_src == LO_EXTERNAL || ch2_lo1_src == LO_REIMPORT))));
    }

    void _config_lo_route(lo_t lo, channel_t channel)
    {
        //Route SPI LEs through CPLD (will not assert them)
        _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH1, bool2bin(lo == LO1 and (channel == CH1 or channel == BOTH)));
        _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH2, bool2bin(lo == LO1 and (channel == CH2 or channel == BOTH)));
        _cpld_regs->rf0_reg2.flush();
        _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH1, bool2bin(lo == LO2 and (channel == CH1 or channel == BOTH)));
        _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH2, bool2bin(lo == LO2 and (channel == CH2 or channel == BOTH)));
        _cpld_regs->if0_reg2.flush();
    }

    void _write_lo_spi(dboard_iface::unit_t unit, const std::vector<uint32_t> &regs)
    {
        for(uint32_t reg:  regs) {
            _db_iface->write_spi(unit, _spi_config, reg, 32);
        }
    }

    void _commit()
    {
        //Commit everything except the LO synthesizers
        _cpld_regs->flush();

        // Disable unused LO synthesizers
        _lo1_enable[size_t(CH1)] = _lo1_src[size_t(CH1)] == LO_INTERNAL  ||
                                   _lo1_src[size_t(CH2)] == LO_COMPANION ||
                                   _lo1_export == LO_CH1_SYNTH;

        _lo1_enable[size_t(CH2)] = _lo1_src[size_t(CH2)] == LO_INTERNAL  ||
                                   _lo1_src[size_t(CH1)] == LO_COMPANION ||
                                   _lo1_export == LO_CH2_SYNTH;
        _lo2_enable[size_t(CH1)] = _lo2_src[size_t(CH1)] == LO_INTERNAL  ||
                                   _lo2_src[size_t(CH2)] == LO_COMPANION ||
                                   _lo2_export == LO_CH1_SYNTH;

        _lo2_enable[size_t(CH2)] = _lo2_src[size_t(CH2)] == LO_INTERNAL  ||
                                   _lo2_src[size_t(CH1)] == LO_COMPANION ||
                                   _lo2_export == LO_CH2_SYNTH;

        _lo1_iface[size_t(CH1)]->set_output_enable(adf535x_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH1)].get());
        _lo1_iface[size_t(CH2)]->set_output_enable(adf535x_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH2)].get());

        _lo2_iface[size_t(CH1)]->set_output_enable(adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH1)].get());
        _lo2_iface[size_t(CH2)]->set_output_enable(adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH2)].get());

        //Commit LO1 frequency
        // Commit Channel 1's settings to both channels simultaneously if the frequency is the same.
        bool simultaneous_commit_lo1 = _lo1_freq[size_t(CH1)].is_dirty() and
                                       _lo1_freq[size_t(CH2)].is_dirty() and
                                       _lo1_freq[size_t(CH1)].get() == _lo1_freq[size_t(CH2)].get() and
                                       _lo1_enable[size_t(CH1)].get() == _lo1_enable[size_t(CH2)].get();

        if (simultaneous_commit_lo1) {
            _config_lo_route(LO1, BOTH);
            //Only commit one of the channels. The route LO_CONFIG_BOTH
            //will ensure that the LEs for both channels are enabled
            _lo1_iface[size_t(CH1)]->commit();
            _lo1_freq[size_t(CH1)].mark_clean();
            _lo1_freq[size_t(CH2)].mark_clean();
            _lo1_enable[size_t(CH1)].mark_clean();
            _lo1_enable[size_t(CH2)].mark_clean();
        } else {
            if (_lo1_freq[size_t(CH1)].is_dirty() || _lo1_enable[size_t(CH1)].is_dirty()) {
                _config_lo_route(LO1, CH1);
                _lo1_iface[size_t(CH1)]->commit();
                _lo1_freq[size_t(CH1)].mark_clean();
                _lo1_enable[size_t(CH1)].mark_clean();
            }
            if (_lo1_freq[size_t(CH2)].is_dirty() || _lo1_enable[size_t(CH2)].is_dirty()) {
                _config_lo_route(LO1, CH2);
                _lo1_iface[size_t(CH2)]->commit();
                _lo1_freq[size_t(CH2)].mark_clean();
                _lo1_enable[size_t(CH2)].mark_clean();
            }
        }

        //Commit LO2 frequency
        bool simultaneous_commit_lo2 = _lo2_freq[size_t(CH1)].is_dirty() and
                                       _lo2_freq[size_t(CH2)].is_dirty() and
                                       _lo2_freq[size_t(CH1)].get() == _lo2_freq[size_t(CH2)].get() and
                                       _lo2_enable[size_t(CH1)].get() == _lo2_enable[size_t(CH2)].get();

        if (simultaneous_commit_lo2) {
            _config_lo_route(LO2, BOTH);
            //Only commit one of the channels. The route LO_CONFIG_BOTH
            //will ensure that the LEs for both channels are enabled
            _lo2_iface[size_t(CH1)]->commit();
            _lo2_freq[size_t(CH1)].mark_clean();
            _lo2_freq[size_t(CH2)].mark_clean();
            _lo2_enable[size_t(CH1)].mark_clean();
            _lo2_enable[size_t(CH2)].mark_clean();
        } else {
            if (_lo2_freq[size_t(CH1)].is_dirty() || _lo2_enable[size_t(CH1)].is_dirty()) {
                _config_lo_route(LO2, CH1);
                _lo2_iface[size_t(CH1)]->commit();
                _lo2_freq[size_t(CH1)].mark_clean();
                _lo2_enable[size_t(CH1)].mark_clean();
            }
            if (_lo2_freq[size_t(CH2)].is_dirty() || _lo2_enable[size_t(CH2)].is_dirty()) {
                _config_lo_route(LO2, CH2);
                _lo2_iface[size_t(CH2)]->commit();
                _lo2_freq[size_t(CH2)].mark_clean();
                _lo2_enable[size_t(CH2)].mark_clean();
            }
        }
    }

private:    //Members
    static const size_t NUM_CHANS = 2;

    struct tune_freq_t : public uhd::math::fp_compare::fp_compare_delta<double> {
        tune_freq_t() : uhd::math::fp_compare::fp_compare_delta<double>(
            0.0, uhd::math::FREQ_COMPARISON_DELTA_HZ) {}

        tune_freq_t(double freq) : uhd::math::fp_compare::fp_compare_delta<double>(
            freq, uhd::math::FREQ_COMPARISON_DELTA_HZ) {}
    };

    boost::mutex                _mutex;
    dboard_iface::sptr          _db_iface;
    twinrx_gpio::sptr           _gpio_iface;
    twinrx_cpld_regmap::sptr    _cpld_regs;
    spi_config_t                _spi_config;
    adf535x_iface::sptr         _lo1_iface[NUM_CHANS];
    adf435x_iface::sptr         _lo2_iface[NUM_CHANS];
    lo_source_t                 _lo1_src[NUM_CHANS];
    lo_source_t                 _lo2_src[NUM_CHANS];
    dirty_tracked<tune_freq_t>  _lo1_freq[NUM_CHANS];
    dirty_tracked<tune_freq_t>  _lo2_freq[NUM_CHANS];
    dirty_tracked<bool>         _lo1_enable[NUM_CHANS];
    dirty_tracked<bool>         _lo2_enable[NUM_CHANS];
    lo_export_source_t          _lo1_export;
    lo_export_source_t          _lo2_export;
    bool                        _chan_enabled[NUM_CHANS];
};

twinrx_ctrl::sptr twinrx_ctrl::make(
    dboard_iface::sptr db_iface,
    twinrx_gpio::sptr gpio_iface,
    twinrx_cpld_regmap::sptr cpld_regmap,
    const dboard_id_t rx_id
) {
    return std::make_shared<twinrx_ctrl_impl>(db_iface, gpio_iface, cpld_regmap, rx_id);
}