// // Copyright 2015-2017 Ettus Research, A National Instruments Company // Copyright 2019 Ettus Research, A National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include "twinrx_ctrl.hpp" #include "twinrx_ids.hpp" #include #include #include #include #include #include #include #include using namespace uhd; using namespace usrp; using namespace dboard::twinrx; namespace { typedef twinrx_cpld_regmap rm; typedef enum { LO1, LO2 } lo_t; inline uint32_t bool2bin(bool x) { return x ? 1 : 0; } const double TWINRX_REV_AB_PFD_FREQ = 6.25e6; const double TWINRX_REV_C_PFD_FREQ = 12.5e6; const double TWINRX_SPI_CLOCK_FREQ = 3e6; const uint32_t TWINRX_LO1_MOD2 = 2; } // namespace class twinrx_ctrl_impl : public twinrx_ctrl { public: twinrx_ctrl_impl(dboard_iface::sptr db_iface, twinrx_gpio::sptr gpio_iface, twinrx_cpld_regmap::sptr cpld_regmap, const dboard_id_t rx_id) : _db_iface(db_iface), _gpio_iface(gpio_iface), _cpld_regs(cpld_regmap) { // SPI configuration _spi_config.use_custom_divider = true; _spi_config.divider = uhd::narrow_cast(std::ceil( _db_iface->get_codec_rate(dboard_iface::UNIT_TX) / TWINRX_SPI_CLOCK_FREQ)); // Daughterboard clock rates must be a multiple of the pfd frequency if (rx_id == twinrx::TWINRX_REV_C_ID) { if (fmod(_db_iface->get_clock_rate(dboard_iface::UNIT_RX), TWINRX_REV_C_PFD_FREQ) != 0) { throw uhd::value_error( str(boost::format( "TwinRX clock rate %f is not a multiple of the pfd freq %f.") % _db_iface->get_clock_rate(dboard_iface::UNIT_RX) % TWINRX_REV_C_PFD_FREQ)); } } else { if (fmod(_db_iface->get_clock_rate(dboard_iface::UNIT_RX), TWINRX_REV_AB_PFD_FREQ) != 0) { throw uhd::value_error( str(boost::format( "TwinRX clock rate %f is not a multiple of the pfd freq %f.") % _db_iface->get_clock_rate(dboard_iface::UNIT_RX) % TWINRX_REV_AB_PFD_FREQ)); } } // Initialize dboard clocks _db_iface->set_clock_enabled(dboard_iface::UNIT_TX, true); _db_iface->set_clock_enabled(dboard_iface::UNIT_RX, true); // Initialize default switch and attenuator states set_chan_enabled(BOTH, false, false); set_preamp1(BOTH, PREAMP_BYPASS, false); set_preamp2(BOTH, false, false); set_lb_preamp_preselector(BOTH, false, false); set_signal_path(BOTH, PATH_LOWBAND, false); set_lb_preselector(BOTH, PRESEL_PATH3, false); set_hb_preselector(BOTH, PRESEL_PATH1, false); set_input_atten(BOTH, 31, false); set_lb_atten(BOTH, 31, false); set_hb_atten(BOTH, 31, false); set_lo1_source(BOTH, LO_INTERNAL, false); set_lo2_source(BOTH, LO_INTERNAL, false); set_lo1_export_source(LO_EXPORT_DISABLED, false); set_lo2_export_source(LO_EXPORT_DISABLED, false); set_antenna_mapping(ANTX_NATIVE, false); set_crossover_cal_mode(CAL_DISABLED, false); _cpld_regs->flush(); // Turn on power and wait for power good _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 1); size_t timeout_ms = 100; while (_gpio_iface->get_field(twinrx_gpio::FIELD_SWPS_PWR_GOOD) == 0) { std::this_thread::sleep_for(std::chrono::microseconds(1000)); if (--timeout_ms == 0) { throw uhd::runtime_error("power supply failure"); } } // Assert synthesizer chip enables _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH1, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO1_CE_CH2, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH1, 1); _gpio_iface->set_field(twinrx_gpio::FIELD_LO2_CE_CH2, 1); // Initialize synthesizers for (size_t i = 0; i < NUM_CHANS; i++) { // LO1 if (rx_id == twinrx::TWINRX_REV_C_ID) { _lo1_iface[i] = adf535x_iface::make_adf5356( [this](const std::vector& regs) { _write_lo_spi(dboard_iface::UNIT_TX, regs); }, [this](uint32_t microseconds) { _db_iface->sleep(boost::chrono::microseconds(microseconds)); }); _lo1_pfd_freq = TWINRX_REV_C_PFD_FREQ; } else { _lo1_iface[i] = adf535x_iface::make_adf5355( [this](const std::vector& regs) { _write_lo_spi(dboard_iface::UNIT_TX, regs); }, [this](uint32_t microseconds) { _db_iface->sleep(boost::chrono::microseconds(microseconds)); }); _lo1_pfd_freq = TWINRX_REV_AB_PFD_FREQ; } _lo1_iface[i]->set_pfd_freq(_lo1_pfd_freq); _lo1_iface[i]->set_output_power(adf535x_iface::OUTPUT_POWER_5DBM); _lo1_iface[i]->set_reference_freq( _db_iface->get_clock_rate(dboard_iface::UNIT_TX)); _lo1_iface[i]->set_muxout_mode(adf535x_iface::MUXOUT_DLD); _lo1_iface[i]->set_frequency(3e9, TWINRX_LO1_MOD2); // LO2 _lo2_iface[i] = adf435x_iface::make_adf4351([this](const std::vector& regs) { _write_lo_spi(dboard_iface::UNIT_RX, regs); }); _lo2_iface[i]->set_feedback_select(adf435x_iface::FB_SEL_DIVIDED); _lo2_iface[i]->set_output_power(adf435x_iface::OUTPUT_POWER_5DBM); _lo2_iface[i]->set_reference_freq( _db_iface->get_clock_rate(dboard_iface::UNIT_RX)); _lo2_iface[i]->set_muxout_mode(adf435x_iface::MUXOUT_DLD); _lo2_iface[i]->set_tuning_mode(adf435x_iface::TUNING_MODE_LOW_SPUR); _lo2_iface[i]->set_prescaler(adf435x_iface::PRESCALER_8_9); } commit(); } ~twinrx_ctrl_impl() override { UHD_SAFE_CALL(boost::lock_guard lock(_mutex); _gpio_iface->set_field(twinrx_gpio::FIELD_SWPS_EN, 0);) } void commit() override { boost::lock_guard lock(_mutex); _commit(); } void set_chan_enabled(channel_t ch, bool enabled, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->if0_reg3.set(rm::if0_reg3_t::IF1_IF2_EN_CH1, bool2bin(enabled)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH1, bool2bin(enabled)); _chan_enabled[size_t(CH1)] = enabled; } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg5.set(rm::rf1_reg5_t::AMP_LO1_EN_CH2, bool2bin(enabled)); _cpld_regs->if0_reg4.set(rm::if0_reg4_t::IF1_IF2_EN_CH2, bool2bin(enabled)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::AMP_LO2_EN_CH2, bool2bin(enabled)); _chan_enabled[size_t(CH2)] = enabled; } _set_lo1_amp(_chan_enabled[size_t(CH1)], _chan_enabled[size_t(CH2)], _lo1_src[size_t(CH2)]); if (commit) _commit(); } void set_preamp1(channel_t ch, preamp_state_t value, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg1.set( rm::rf0_reg1_t::SWPA1_CTL_CH1, bool2bin(value == PREAMP_HIGHBAND)); _cpld_regs->rf2_reg2.set( rm::rf2_reg2_t::SWPA2_CTRL_CH1, bool2bin(value == PREAMP_BYPASS)); _cpld_regs->rf0_reg1.set( rm::rf0_reg1_t::HB_PREAMP_EN_CH1, bool2bin(value == PREAMP_HIGHBAND)); _cpld_regs->rf0_reg1.set( rm::rf0_reg1_t::LB_PREAMP_EN_CH1, bool2bin(value == PREAMP_LOWBAND)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg7.set( rm::rf0_reg7_t::SWPA1_CTRL_CH2, bool2bin(value == PREAMP_HIGHBAND)); _cpld_regs->rf2_reg5.set( rm::rf2_reg5_t::SWPA2_CTRL_CH2, bool2bin(value == PREAMP_BYPASS)); _cpld_regs->rf0_reg5.set( rm::rf0_reg5_t::HB_PREAMP_EN_CH2, bool2bin(value == PREAMP_HIGHBAND)); _cpld_regs->rf2_reg6.set( rm::rf2_reg6_t::LB_PREAMP_EN_CH2, bool2bin(value == PREAMP_LOWBAND)); } if (commit) _commit(); } void set_preamp2(channel_t ch, bool enabled, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg7.set( rm::rf2_reg7_t::SWPA4_CTRL_CH1, bool2bin(not enabled)); _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::PREAMP2_EN_CH1, bool2bin(enabled)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg6.set( rm::rf0_reg6_t::SWPA4_CTRL_CH2, bool2bin(not enabled)); _cpld_regs->rf1_reg6.set(rm::rf1_reg6_t::PREAMP2_EN_CH2, bool2bin(enabled)); } if (commit) _commit(); } void set_lb_preamp_preselector( channel_t ch, bool enabled, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg7.set( rm::rf0_reg7_t::SWPA3_CTRL_CH1, bool2bin(not enabled)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg1.set( rm::rf0_reg1_t::SWPA3_CTRL_CH2, bool2bin(not enabled)); } if (commit) _commit(); } void set_signal_path(channel_t ch, signal_path_t path, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg2.set( rm::rf2_reg2_t::SW11_CTRL_CH1, bool2bin(path == PATH_LOWBAND)); _cpld_regs->rf1_reg2.set( rm::rf1_reg2_t::SW12_CTRL_CH1, bool2bin(path == PATH_LOWBAND)); _cpld_regs->rf1_reg6.set( rm::rf1_reg6_t::HB_PRESEL_PGA_EN_CH1, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf0_reg2.set( rm::rf0_reg2_t::SW6_CTRL_CH1, bool2bin(path == PATH_LOWBAND)); _cpld_regs->if0_reg3.set( rm::if0_reg3_t::SW13_CTRL_CH1, bool2bin(path == PATH_LOWBAND)); _cpld_regs->if0_reg2.set( rm::if0_reg2_t::AMP_LB_IF1_EN_CH1, bool2bin(path == PATH_LOWBAND)); _cpld_regs->if0_reg0.set( rm::if0_reg0_t::AMP_HB_IF1_EN_CH1, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf1_reg2.set( rm::rf1_reg2_t::AMP_HB_EN_CH1, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf2_reg2.set( rm::rf2_reg2_t::AMP_LB_EN_CH1, bool2bin(path == PATH_LOWBAND)); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf2_reg7.set( rm::rf2_reg7_t::SW11_CTRL_CH2, bool2bin(path == PATH_LOWBAND)); _cpld_regs->rf1_reg7.set( rm::rf1_reg7_t::SW12_CTRL_CH2, bool2bin(path == PATH_LOWBAND)); _cpld_regs->rf1_reg2.set( rm::rf1_reg2_t::HB_PRESEL_PGA_EN_CH2, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf0_reg6.set( rm::rf0_reg6_t::SW6_CTRL_CH2, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->if0_reg6.set( rm::if0_reg6_t::SW13_CTRL_CH2, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->if0_reg2.set( rm::if0_reg2_t::AMP_LB_IF1_EN_CH2, bool2bin(path == PATH_LOWBAND)); _cpld_regs->if0_reg6.set( rm::if0_reg6_t::AMP_HB_IF1_EN_CH2, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf1_reg7.set( rm::rf1_reg7_t::AMP_HB_EN_CH2, bool2bin(path == PATH_HIGHBAND)); _cpld_regs->rf2_reg7.set( rm::rf2_reg7_t::AMP_LB_EN_CH2, bool2bin(path == PATH_LOWBAND)); } if (commit) _commit(); } void set_lb_preselector( channel_t ch, preselector_path_t path, bool commit = true) override { boost::lock_guard lock(_mutex); uint32_t sw7val = 0, sw8val = 0; switch (path) { case PRESEL_PATH1: sw7val = 3; sw8val = 1; break; case PRESEL_PATH2: sw7val = 2; sw8val = 0; break; case PRESEL_PATH3: sw7val = 0; sw8val = 2; break; case PRESEL_PATH4: sw7val = 1; sw8val = 3; break; default: UHD_THROW_INVALID_CODE_PATH(); } if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW7_CTRL_CH1, sw7val); _cpld_regs->rf2_reg3.set(rm::rf2_reg3_t::SW8_CTRL_CH1, sw8val); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg7.set(rm::rf0_reg7_t::SW7_CTRL_CH2, sw7val); _cpld_regs->rf2_reg7.set(rm::rf2_reg7_t::SW8_CTRL_CH2, sw8val); } if (commit) _commit(); } void set_hb_preselector( channel_t ch, preselector_path_t path, bool commit = true) override { boost::lock_guard lock(_mutex); uint32_t sw9ch1val = 0, sw10ch1val = 0, sw9ch2val = 0, sw10ch2val = 0; switch (path) { case PRESEL_PATH1: sw9ch1val = 3; sw10ch1val = 0; sw9ch2val = 0; sw10ch2val = 3; break; case PRESEL_PATH2: sw9ch1val = 1; sw10ch1val = 2; sw9ch2val = 1; sw10ch2val = 1; break; case PRESEL_PATH3: sw9ch1val = 2; sw10ch1val = 1; sw9ch2val = 2; sw10ch2val = 2; break; case PRESEL_PATH4: sw9ch1val = 0; sw10ch1val = 3; sw9ch2val = 3; sw10ch2val = 0; break; default: UHD_THROW_INVALID_CODE_PATH(); } if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg5.set(rm::rf0_reg5_t::SW9_CTRL_CH1, sw9ch1val); _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW10_CTRL_CH1, sw10ch1val); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg3.set(rm::rf0_reg3_t::SW9_CTRL_CH2, sw9ch2val); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW10_CTRL_CH2, sw10ch2val); } if (commit) _commit(); } void set_input_atten(channel_t ch, uint8_t atten, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf0_reg0.set(rm::rf0_reg0_t::ATTEN_IN_CH1, atten & 0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf0_reg4.set(rm::rf0_reg4_t::ATTEN_IN_CH2, atten & 0x1F); } if (commit) _commit(); } void set_lb_atten(channel_t ch, uint8_t atten, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf2_reg0.set(rm::rf2_reg0_t::ATTEN_LB_CH1, atten & 0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf2_reg4.set(rm::rf2_reg4_t::ATTEN_LB_CH2, atten & 0x1F); } if (commit) _commit(); } void set_hb_atten(channel_t ch, uint8_t atten, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf1_reg0.set(rm::rf1_reg0_t::ATTEN_HB_CH1, atten & 0x1F); } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg4.set(rm::rf1_reg4_t::ATTEN_HB_CH2, atten & 0x1F); } if (commit) _commit(); } void set_lo1_source(channel_t ch, lo_source_t source, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->rf1_reg5.set( rm::rf1_reg5_t::SW14_CTRL_CH2, bool2bin(source != LO_COMPANION)); _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::SW15_CTRL_CH1, bool2bin(source == LO_EXTERNAL || source == LO_REIMPORT)); _cpld_regs->rf1_reg1.set( rm::rf1_reg1_t::SW16_CTRL_CH1, bool2bin(source != LO_INTERNAL)); _lo1_src[size_t(CH1)] = source; } if (ch == CH2 or ch == BOTH) { _cpld_regs->rf1_reg1.set( rm::rf1_reg1_t::SW14_CTRL_CH1, bool2bin(source == LO_COMPANION)); _cpld_regs->rf1_reg5.set( rm::rf1_reg5_t::SW15_CTRL_CH2, bool2bin(source != LO_INTERNAL)); _cpld_regs->rf1_reg6.set( rm::rf1_reg6_t::SW16_CTRL_CH2, bool2bin(source == LO_INTERNAL)); _lo1_src[size_t(CH2)] = source; _set_lo1_amp(_chan_enabled[size_t(CH1)], _chan_enabled[size_t(CH2)], _lo1_src[size_t(CH2)]); } if (commit) _commit(); } void set_lo2_source(channel_t ch, lo_source_t source, bool commit = true) override { boost::lock_guard lock(_mutex); if (ch == CH1 or ch == BOTH) { _cpld_regs->if0_reg0.set( rm::if0_reg0_t::SW19_CTRL_CH2, bool2bin(source == LO_COMPANION)); _cpld_regs->if0_reg1.set( rm::if0_reg1_t::SW20_CTRL_CH1, bool2bin(source == LO_COMPANION)); _cpld_regs->if0_reg4.set( rm::if0_reg4_t::SW21_CTRL_CH1, bool2bin(source == LO_INTERNAL)); _lo2_src[size_t(CH1)] = source; } if (ch == CH2 or ch == BOTH) { _cpld_regs->if0_reg4.set(rm::if0_reg4_t::SW19_CTRL_CH1, bool2bin(source == LO_EXTERNAL || source == LO_REIMPORT)); _cpld_regs->if0_reg0.set(rm::if0_reg0_t::SW20_CTRL_CH2, bool2bin(source == LO_INTERNAL || source == LO_DISABLED)); _cpld_regs->if0_reg4.set( rm::if0_reg4_t::SW21_CTRL_CH2, bool2bin(source == LO_INTERNAL)); _lo2_src[size_t(CH2)] = source; } if (commit) _commit(); } void set_lo1_export_source(lo_export_source_t source, bool commit = true) override { boost::lock_guard lock(_mutex); // SW22 may conflict with the cal switch but this attr takes priority and we // assume that the cal switch is disabled (by disabling it!) _set_cal_mode(CAL_DISABLED, source); _cpld_regs->rf1_reg3.set( rm::rf1_reg3_t::SW23_CTRL, bool2bin(source != LO_CH1_SYNTH)); _lo1_export = source; if (commit) _commit(); } void set_lo2_export_source(lo_export_source_t source, bool commit = true) override { boost::lock_guard lock(_mutex); _cpld_regs->if0_reg7.set( rm::if0_reg7_t::SW24_CTRL_CH2, bool2bin(source == LO_CH2_SYNTH)); _cpld_regs->if0_reg4.set( rm::if0_reg4_t::SW25_CTRL, bool2bin(source != LO_CH1_SYNTH)); _cpld_regs->if0_reg3.set( rm::if0_reg3_t::SW24_CTRL_CH1, bool2bin(source != LO_CH1_SYNTH)); _lo2_export = source; if (commit) _commit(); } void set_antenna_mapping(antenna_mapping_t mapping, bool commit = true) override { boost::lock_guard lock(_mutex); enum switch_path_t { CONNECT, TERM, EXPORT, IMPORT, SWAP }; switch_path_t path1, path2; switch (mapping) { case ANTX_NATIVE: path1 = CONNECT; path2 = CONNECT; break; case ANT1_SHARED: path1 = EXPORT; path2 = IMPORT; break; case ANT2_SHARED: path1 = IMPORT; path2 = EXPORT; break; case ANTX_SWAPPED: path1 = SWAP; path2 = SWAP; break; default: path1 = TERM; path2 = TERM; break; } _cpld_regs->rf0_reg5.set( rm::rf0_reg5_t::SW3_CTRL_CH1, bool2bin(path1 == EXPORT || path1 == SWAP)); _cpld_regs->rf0_reg2.set( rm::rf0_reg2_t::SW4_CTRL_CH1, bool2bin(!(path1 == IMPORT || path1 == SWAP))); _cpld_regs->rf0_reg2.set( rm::rf0_reg2_t::SW5_CTRL_CH1, bool2bin(path1 == CONNECT)); _cpld_regs->rf0_reg7.set( rm::rf0_reg7_t::SW3_CTRL_CH2, bool2bin(path2 == EXPORT || path2 == SWAP)); _cpld_regs->rf0_reg6.set( rm::rf0_reg6_t::SW4_CTRL_CH2, bool2bin(path2 == IMPORT || path2 == SWAP)); _cpld_regs->rf0_reg6.set( rm::rf0_reg6_t::SW5_CTRL_CH2, bool2bin(path2 == CONNECT)); if (commit) _commit(); } void set_crossover_cal_mode(cal_mode_t cal_mode, bool commit = true) override { boost::lock_guard lock(_mutex); if (_lo1_export == LO_CH1_SYNTH && cal_mode == CAL_CH2) { throw uhd::runtime_error( "cannot enable cal crossover on CH2 when LO1 in CH1 is exported"); } if (_lo1_export == LO_CH2_SYNTH && cal_mode == CAL_CH1) { throw uhd::runtime_error( "cannot enable cal crossover on CH1 when LO1 in CH2 is exported"); } _set_cal_mode(cal_mode, _lo1_export); if (commit) _commit(); } double set_lo1_synth_freq(channel_t ch, double freq, bool commit = true) override { boost::lock_guard lock(_mutex); double coerced_freq = 0.0; if (ch == CH1 or ch == BOTH) { coerced_freq = _lo1_iface[size_t(CH1)]->set_frequency(freq, TWINRX_LO1_MOD2, false); _lo1_freq[size_t(CH1)] = tune_freq_t(freq); } if (ch == CH2 or ch == BOTH) { coerced_freq = _lo1_iface[size_t(CH2)]->set_frequency(freq, TWINRX_LO1_MOD2, false); _lo1_freq[size_t(CH2)] = tune_freq_t(freq); } if (commit) _commit(); return coerced_freq; } double set_lo2_synth_freq(channel_t ch, double freq, bool commit = true) override { boost::lock_guard lock(_mutex); double coerced_freq = 0.0; if (ch == CH1 or ch == BOTH) { coerced_freq = _lo2_iface[size_t(CH1)]->set_frequency(freq, false, false); _lo2_freq[size_t(CH1)] = tune_freq_t(freq); } if (ch == CH2 or ch == BOTH) { coerced_freq = _lo2_iface[size_t(CH2)]->set_frequency(freq, false, false); _lo2_freq[size_t(CH2)] = tune_freq_t(freq); } if (commit) _commit(); return coerced_freq; } double set_lo1_charge_pump(channel_t ch, double current, bool commit = true) override { boost::lock_guard lock(_mutex); double coerced_current = 0.0; if (ch == CH1 or ch == BOTH) { coerced_current = _lo1_iface[size_t(CH1)]->set_charge_pump_current(current, false); } if (ch == CH2 or ch == BOTH) { coerced_current = _lo1_iface[size_t(CH2)]->set_charge_pump_current(current, false); } if (commit) { _commit(); } return coerced_current; } double set_lo2_charge_pump(channel_t ch, double current, bool commit = true) override { boost::lock_guard lock(_mutex); double coerced_current = 0.0; if (ch == CH1 or ch == BOTH) { coerced_current = _lo2_iface[size_t(CH1)]->set_charge_pump_current(current, false); } if (ch == CH2 or ch == BOTH) { coerced_current = _lo2_iface[size_t(CH2)]->set_charge_pump_current(current, false); } if (commit) { _commit(); } return coerced_current; } uhd::meta_range_t get_lo1_charge_pump_range() override { // assume that both channels have the same range return _lo1_iface[size_t(CH1)]->get_charge_pump_current_range(); } uhd::meta_range_t get_lo2_charge_pump_range() override { // assume that both channels have the same range return _lo2_iface[size_t(CH1)]->get_charge_pump_current_range(); } bool read_lo1_locked(channel_t ch) override { boost::lock_guard lock(_mutex); bool locked = true; if (ch == CH1 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH1) == 1); } if (ch == CH2 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO1_MUXOUT_CH2) == 1); } return locked; } bool read_lo2_locked(channel_t ch) override { boost::lock_guard lock(_mutex); bool locked = true; if (ch == CH1 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH1) == 1); } if (ch == CH2 or ch == BOTH) { locked = locked && (_gpio_iface->get_field(twinrx_gpio::FIELD_LO2_MUXOUT_CH2) == 1); } return locked; } private: // Functions void _set_cal_mode(cal_mode_t cal_mode, lo_export_source_t lo1_export_src) { _cpld_regs->rf1_reg1.set( rm::rf1_reg1_t::SW17_CTRL_CH1, bool2bin(cal_mode != CAL_CH1)); _cpld_regs->rf1_reg6.set( rm::rf1_reg6_t::SW17_CTRL_CH2, bool2bin(cal_mode != CAL_CH2)); _cpld_regs->rf1_reg5.set( rm::rf1_reg5_t::SW18_CTRL_CH1, bool2bin(cal_mode != CAL_CH1)); _cpld_regs->rf2_reg3.set( rm::rf2_reg3_t::SW18_CTRL_CH2, bool2bin(cal_mode != CAL_CH2)); _cpld_regs->rf1_reg3.set(rm::rf1_reg3_t::SW22_CTRL_CH1, bool2bin((lo1_export_src != LO_CH1_SYNTH) || (cal_mode == CAL_CH1))); _cpld_regs->rf1_reg7.set(rm::rf1_reg7_t::SW22_CTRL_CH2, bool2bin((lo1_export_src != LO_CH2_SYNTH) || (cal_mode == CAL_CH2))); } void _set_lo1_amp(bool ch1_enabled, bool ch2_enabled, lo_source_t ch2_lo1_src) { // AMP_LO1_EN_CH1 also controls the amp for the external LO1 port, // which could be in use by ch2 _cpld_regs->rf1_reg1.set(rm::rf1_reg1_t::AMP_LO1_EN_CH1, bool2bin( ch1_enabled || (ch2_enabled && (ch2_lo1_src == LO_EXTERNAL || ch2_lo1_src == LO_REIMPORT)))); } void _config_lo_route(lo_t lo, channel_t channel) { // Route SPI LEs through CPLD (will not assert them) _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH1, bool2bin(lo == LO1 and (channel == CH1 or channel == BOTH))); _cpld_regs->rf0_reg2.set(rm::rf0_reg2_t::LO1_LE_CH2, bool2bin(lo == LO1 and (channel == CH2 or channel == BOTH))); _cpld_regs->rf0_reg2.flush(); _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH1, bool2bin(lo == LO2 and (channel == CH1 or channel == BOTH))); _cpld_regs->if0_reg2.set(rm::if0_reg2_t::LO2_LE_CH2, bool2bin(lo == LO2 and (channel == CH2 or channel == BOTH))); _cpld_regs->if0_reg2.flush(); } void _write_lo_spi(dboard_iface::unit_t unit, const std::vector& regs) { for (uint32_t reg : regs) { _db_iface->write_spi(unit, _spi_config, reg, 32); } } void _commit() { // Commit everything except the LO synthesizers _cpld_regs->flush(); // Disable unused LO synthesizers _lo1_enable[size_t(CH1)] = _lo1_src[size_t(CH1)] == LO_INTERNAL || _lo1_src[size_t(CH2)] == LO_COMPANION || _lo1_export == LO_CH1_SYNTH; _lo1_enable[size_t(CH2)] = _lo1_src[size_t(CH2)] == LO_INTERNAL || _lo1_src[size_t(CH1)] == LO_COMPANION || _lo1_export == LO_CH2_SYNTH; _lo2_enable[size_t(CH1)] = _lo2_src[size_t(CH1)] == LO_INTERNAL || _lo2_src[size_t(CH2)] == LO_COMPANION || _lo2_export == LO_CH1_SYNTH; _lo2_enable[size_t(CH2)] = _lo2_src[size_t(CH2)] == LO_INTERNAL || _lo2_src[size_t(CH1)] == LO_COMPANION || _lo2_export == LO_CH2_SYNTH; _lo1_iface[size_t(CH1)]->set_output_enable( adf535x_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH1)].get()); _lo1_iface[size_t(CH2)]->set_output_enable( adf535x_iface::RF_OUTPUT_A, _lo1_enable[size_t(CH2)].get()); _lo2_iface[size_t(CH1)]->set_output_enable( adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH1)].get()); _lo2_iface[size_t(CH2)]->set_output_enable( adf435x_iface::RF_OUTPUT_A, _lo2_enable[size_t(CH2)].get()); // Commit LO1 frequency // Commit Channel 1's settings to both channels simultaneously if the frequency is // the same. bool simultaneous_commit_lo1 = _lo1_freq[size_t(CH1)].is_dirty() and _lo1_freq[size_t(CH2)].is_dirty() and _lo1_freq[size_t(CH1)].get() == _lo1_freq[size_t(CH2)].get() and _lo1_enable[size_t(CH1)].get() == _lo1_enable[size_t(CH2)].get(); if (simultaneous_commit_lo1) { _config_lo_route(LO1, BOTH); // Only commit one of the channels. The route LO_CONFIG_BOTH // will ensure that the LEs for both channels are enabled _lo1_iface[size_t(CH1)]->commit(); _lo1_freq[size_t(CH1)].mark_clean(); _lo1_freq[size_t(CH2)].mark_clean(); _lo1_enable[size_t(CH1)].mark_clean(); _lo1_enable[size_t(CH2)].mark_clean(); } else { if (_lo1_freq[size_t(CH1)].is_dirty() || _lo1_enable[size_t(CH1)].is_dirty()) { _config_lo_route(LO1, CH1); _lo1_iface[size_t(CH1)]->commit(); _lo1_freq[size_t(CH1)].mark_clean(); _lo1_enable[size_t(CH1)].mark_clean(); } if (_lo1_freq[size_t(CH2)].is_dirty() || _lo1_enable[size_t(CH2)].is_dirty()) { _config_lo_route(LO1, CH2); _lo1_iface[size_t(CH2)]->commit(); _lo1_freq[size_t(CH2)].mark_clean(); _lo1_enable[size_t(CH2)].mark_clean(); } } // Commit LO2 frequency bool simultaneous_commit_lo2 = _lo2_freq[size_t(CH1)].is_dirty() and _lo2_freq[size_t(CH2)].is_dirty() and _lo2_freq[size_t(CH1)].get() == _lo2_freq[size_t(CH2)].get() and _lo2_enable[size_t(CH1)].get() == _lo2_enable[size_t(CH2)].get(); if (simultaneous_commit_lo2) { _config_lo_route(LO2, BOTH); // Only commit one of the channels. The route LO_CONFIG_BOTH // will ensure that the LEs for both channels are enabled _lo2_iface[size_t(CH1)]->commit(); _lo2_freq[size_t(CH1)].mark_clean(); _lo2_freq[size_t(CH2)].mark_clean(); _lo2_enable[size_t(CH1)].mark_clean(); _lo2_enable[size_t(CH2)].mark_clean(); } else { if (_lo2_freq[size_t(CH1)].is_dirty() || _lo2_enable[size_t(CH1)].is_dirty()) { _config_lo_route(LO2, CH1); _lo2_iface[size_t(CH1)]->commit(); _lo2_freq[size_t(CH1)].mark_clean(); _lo2_enable[size_t(CH1)].mark_clean(); } if (_lo2_freq[size_t(CH2)].is_dirty() || _lo2_enable[size_t(CH2)].is_dirty()) { _config_lo_route(LO2, CH2); _lo2_iface[size_t(CH2)]->commit(); _lo2_freq[size_t(CH2)].mark_clean(); _lo2_enable[size_t(CH2)].mark_clean(); } } } private: // Members static const size_t NUM_CHANS = 2; struct tune_freq_t : public uhd::math::fp_compare::fp_compare_delta { tune_freq_t() : uhd::math::fp_compare::fp_compare_delta( 0.0, uhd::math::FREQ_COMPARISON_DELTA_HZ) { } tune_freq_t(double freq) : uhd::math::fp_compare::fp_compare_delta( freq, uhd::math::FREQ_COMPARISON_DELTA_HZ) { } }; boost::mutex _mutex; dboard_iface::sptr _db_iface; twinrx_gpio::sptr _gpio_iface; twinrx_cpld_regmap::sptr _cpld_regs; spi_config_t _spi_config; double _lo1_pfd_freq; adf535x_iface::sptr _lo1_iface[NUM_CHANS]; adf435x_iface::sptr _lo2_iface[NUM_CHANS]; lo_source_t _lo1_src[NUM_CHANS]; lo_source_t _lo2_src[NUM_CHANS]; dirty_tracked _lo1_freq[NUM_CHANS]; dirty_tracked _lo2_freq[NUM_CHANS]; dirty_tracked _lo1_enable[NUM_CHANS]; dirty_tracked _lo2_enable[NUM_CHANS]; lo_export_source_t _lo1_export; lo_export_source_t _lo2_export; bool _chan_enabled[NUM_CHANS]; }; twinrx_ctrl::sptr twinrx_ctrl::make(dboard_iface::sptr db_iface, twinrx_gpio::sptr gpio_iface, twinrx_cpld_regmap::sptr cpld_regmap, const dboard_id_t rx_id) { return std::make_shared(db_iface, gpio_iface, cpld_regmap, rx_id); }