// // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "rhodium_radio_ctrl_impl.hpp" #include "rhodium_constants.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::rfnoc; using namespace uhd::math::fp_compare; namespace { constexpr char RX_FE_CONNECTION_LOWBAND[] = "QI"; constexpr char RX_FE_CONNECTION_HIGHBAND[] = "IQ"; constexpr char TX_FE_CONNECTION_LOWBAND[] = "QI"; constexpr char TX_FE_CONNECTION_HIGHBAND[] = "IQ"; constexpr double DEFAULT_IDENTIFY_DURATION = 5.0; // seconds constexpr uint64_t SET_RATE_RPC_TIMEOUT_MS = 10000; const fs_path TX_FE_PATH = fs_path("tx_frontends") / 0 / "tune_args"; const fs_path RX_FE_PATH = fs_path("rx_frontends") / 0 / "tune_args"; device_addr_t _get_tune_args(uhd::property_tree::sptr tree, std::string _radio_slot, uhd::direction_t dir) { const auto subtree = tree->subtree(fs_path("dboards") / _radio_slot); const auto tune_arg_path = (dir == RX_DIRECTION) ? RX_FE_PATH : TX_FE_PATH; return subtree->access(tune_arg_path).get(); } } /****************************************************************************** * Structors *****************************************************************************/ UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(rhodium_radio_ctrl) { UHD_LOG_TRACE(unique_id(), "Entering rhodium_radio_ctrl_impl ctor..."); const char radio_slot_name[] = {'A', 'B'}; _radio_slot = radio_slot_name[get_block_id().get_block_count()]; _rpc_prefix = (_radio_slot == "A") ? "db_0_" : "db_1_"; UHD_LOG_TRACE(unique_id(), "Radio slot: " << _radio_slot); } rhodium_radio_ctrl_impl::~rhodium_radio_ctrl_impl() { UHD_LOG_TRACE(unique_id(), "rhodium_radio_ctrl_impl::dtor() "); } /****************************************************************************** * API Calls *****************************************************************************/ double rhodium_radio_ctrl_impl::set_rate(double requested_rate) { meta_range_t rates; for (const double rate : RHODIUM_RADIO_RATES) { rates.push_back(range_t(rate)); } const double rate = rates.clip(requested_rate); if (!math::frequencies_are_equal(requested_rate, rate)) { UHD_LOG_WARNING(unique_id(), "Coercing requested sample rate from " << (requested_rate / 1e6) << " MHz to " << (rate / 1e6) << " MHz, the closest possible rate."); } const double current_rate = get_rate(); if (math::frequencies_are_equal(current_rate, rate)) { UHD_LOG_DEBUG( unique_id(), "Rate is already at " << (rate / 1e6) << " MHz. Skipping set_rate()"); return current_rate; } UHD_LOG_TRACE(unique_id(), "Updating master clock rate to " << rate); auto new_rate = _rpcc->request_with_token( SET_RATE_RPC_TIMEOUT_MS, _rpc_prefix + "set_master_clock_rate", rate); // The lowband LO frequency will change with the master clock rate, so // update the tuning of the device. set_tx_frequency(get_tx_frequency(0), 0); set_rx_frequency(get_rx_frequency(0), 0); radio_ctrl_impl::set_rate(new_rate); return new_rate; } void rhodium_radio_ctrl_impl::set_tx_antenna( const std::string &ant, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_tx_antenna(ant=" << ant << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); if (!uhd::has(RHODIUM_TX_ANTENNAS, ant)) { throw uhd::value_error(str( boost::format("[%s] Requesting invalid TX antenna value: %s") % unique_id() % ant )); } _update_tx_output_switches(ant); // _update_atr will set the cached antenna value, so no need to do // it here. See comments in _update_antenna for more info. _update_atr(ant, TX_DIRECTION); } void rhodium_radio_ctrl_impl::set_rx_antenna( const std::string &ant, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "Setting RX antenna to " << ant); UHD_ASSERT_THROW(chan == 0); if (!uhd::has(RHODIUM_RX_ANTENNAS, ant)) { throw uhd::value_error(str( boost::format("[%s] Requesting invalid RX antenna value: %s") % unique_id() % ant )); } _update_rx_input_switches(ant); // _update_atr will set the cached antenna value, so no need to do // it here. See comments in _update_antenna for more info. _update_atr(ant, RX_DIRECTION); } void rhodium_radio_ctrl_impl::_set_tx_fe_connection(const std::string &conn) { UHD_LOG_TRACE(unique_id(), "set_tx_fe_connection(conn=" << conn << ")"); if (conn != _tx_fe_connection) { _tx_fe_core->set_mux(conn); _tx_fe_connection = conn; } } void rhodium_radio_ctrl_impl::_set_rx_fe_connection(const std::string &conn) { UHD_LOG_TRACE(unique_id(), "set_rx_fe_connection(conn=" << conn << ")"); if (conn != _tx_fe_connection) { _rx_fe_core->set_fe_connection(conn); _rx_fe_connection = conn; } } std::string rhodium_radio_ctrl_impl::_get_tx_fe_connection() const { UHD_LOG_TRACE(unique_id(), "get_tx_fe_connection()"); return _tx_fe_connection; } std::string rhodium_radio_ctrl_impl::_get_rx_fe_connection() const { UHD_LOG_TRACE(unique_id(), "get_rx_fe_connection()"); return _rx_fe_connection; } double rhodium_radio_ctrl_impl::set_tx_frequency( const double freq, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_tx_frequency(f=" << freq << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); const auto old_freq = get_tx_frequency(0); double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ); if (freq != coerced_target_freq) { UHD_LOG_DEBUG(unique_id(), "Requested frequency is outside supported range. Coercing to " << coerced_target_freq); } const bool is_highband = !_is_tx_lowband(coerced_target_freq); const double target_lo_freq = is_highband ? coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq; const double actual_lo_freq = set_tx_lo_freq(target_lo_freq, RHODIUM_LO1, chan); const double coerced_freq = is_highband ? actual_lo_freq : _get_lowband_lo_freq() - actual_lo_freq; const auto conn = is_highband ? TX_FE_CONNECTION_HIGHBAND : TX_FE_CONNECTION_LOWBAND; // update the cached frequency value now so calls to set gain and update // switches will read the new frequency radio_ctrl_impl::set_tx_frequency(coerced_freq, chan); _set_tx_fe_connection(conn); set_tx_gain(get_tx_gain(chan), 0); if (_get_highband_spur_reduction_enabled(TX_DIRECTION)) { if (_get_timed_command_enabled() and _is_tx_lowband(old_freq) != not is_highband) { UHD_LOG_WARNING(unique_id(), "Timed tuning commands that transition between lowband and highband, 450 " "MHz, do not function correctly when highband_spur_reduction is enabled! " "Disable highband_spur_reduction or avoid using timed tuning commands."); } UHD_LOG_TRACE( unique_id(), "TX Lowband LO is " << (is_highband ? "disabled" : "enabled")); _rpcc->notify_with_token(_rpc_prefix + "enable_tx_lowband_lo", (!is_highband)); } _update_tx_freq_switches(coerced_freq); const bool enable_corrections = is_highband and (get_tx_lo_source(RHODIUM_LO1, 0) == "internal"); _update_corrections(actual_lo_freq, TX_DIRECTION, enable_corrections); // if TX lowband/highband changed and antenna is TX/RX, // the ATR and SW1 need to be updated _update_tx_output_switches(get_tx_antenna(0)); _update_atr(get_tx_antenna(0), TX_DIRECTION); return coerced_freq; } double rhodium_radio_ctrl_impl::set_rx_frequency( const double freq, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_rx_frequency(f=" << freq << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); const auto old_freq = get_rx_frequency(0); double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ); if (freq != coerced_target_freq) { UHD_LOG_DEBUG(unique_id(), "Requested frequency is outside supported range. Coercing to " << coerced_target_freq); } const bool is_highband = !_is_rx_lowband(coerced_target_freq); const double target_lo_freq = is_highband ? coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq; const double actual_lo_freq = set_rx_lo_freq(target_lo_freq, RHODIUM_LO1, chan); const double coerced_freq = is_highband ? actual_lo_freq : _get_lowband_lo_freq() - actual_lo_freq; const auto conn = is_highband ? RX_FE_CONNECTION_HIGHBAND : RX_FE_CONNECTION_LOWBAND; // update the cached frequency value now so calls to set gain and update // switches will read the new frequency radio_ctrl_impl::set_rx_frequency(coerced_freq, chan); _set_rx_fe_connection(conn); set_rx_gain(get_rx_gain(chan), 0); if (_get_highband_spur_reduction_enabled(RX_DIRECTION)) { if (_get_timed_command_enabled() and _is_rx_lowband(old_freq) != not is_highband) { UHD_LOG_WARNING(unique_id(), "Timed tuning commands that transition between lowband and highband, 450 " "MHz, do not function correctly when highband_spur_reduction is enabled! " "Disable highband_spur_reduction or avoid using timed tuning commands."); } UHD_LOG_TRACE( unique_id(), "RX Lowband LO is " << (is_highband ? "disabled" : "enabled")); _rpcc->notify_with_token(_rpc_prefix + "enable_rx_lowband_lo", (!is_highband)); } _update_rx_freq_switches(coerced_freq); const bool enable_corrections = is_highband and (get_rx_lo_source(RHODIUM_LO1, 0) == "internal"); _update_corrections(actual_lo_freq, RX_DIRECTION, enable_corrections); return coerced_freq; } double rhodium_radio_ctrl_impl::set_rx_bandwidth( const double bandwidth, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_rx_bandwidth(bandwidth=" << bandwidth << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); return get_rx_bandwidth(chan); } double rhodium_radio_ctrl_impl::set_tx_bandwidth( const double bandwidth, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_tx_bandwidth(bandwidth=" << bandwidth << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); return get_tx_bandwidth(chan); } double rhodium_radio_ctrl_impl::set_tx_gain( const double gain, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_tx_gain(gain=" << gain << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); auto freq = this->get_tx_frequency(chan); auto index = _get_gain_range(TX_DIRECTION).clip(gain); auto old_band = _is_tx_lowband(_tx_frequency_at_last_gain_write) ? rhodium_cpld_ctrl::gain_band_t::LOW : rhodium_cpld_ctrl::gain_band_t::HIGH; auto new_band = _is_tx_lowband(freq) ? rhodium_cpld_ctrl::gain_band_t::LOW : rhodium_cpld_ctrl::gain_band_t::HIGH; // The CPLD requires a rewrite of the gain control command on a change of lowband or highband if (get_tx_gain(chan) != index or old_band != new_band) { UHD_LOG_TRACE(unique_id(), "Writing new TX gain index: " << index); _cpld->set_gain_index(index, new_band, TX_DIRECTION); _tx_frequency_at_last_gain_write = freq; radio_ctrl_impl::set_tx_gain(index, chan); } else { UHD_LOG_TRACE(unique_id(), "No change in index or band, skipped writing TX gain index: " << index); } return index; } double rhodium_radio_ctrl_impl::set_rx_gain( const double gain, const size_t chan ) { UHD_LOG_TRACE(unique_id(), "set_rx_gain(gain=" << gain << ", chan=" << chan << ")"); UHD_ASSERT_THROW(chan == 0); auto freq = this->get_rx_frequency(chan); auto index = _get_gain_range(RX_DIRECTION).clip(gain); auto old_band = _is_rx_lowband(_rx_frequency_at_last_gain_write) ? rhodium_cpld_ctrl::gain_band_t::LOW : rhodium_cpld_ctrl::gain_band_t::HIGH; auto new_band = _is_rx_lowband(freq) ? rhodium_cpld_ctrl::gain_band_t::LOW : rhodium_cpld_ctrl::gain_band_t::HIGH; // The CPLD requires a rewrite of the gain control command on a change of lowband or highband if (get_rx_gain(chan) != index or old_band != new_band) { UHD_LOG_TRACE(unique_id(), "Writing new RX gain index: " << index); _cpld->set_gain_index(index, new_band, RX_DIRECTION); _rx_frequency_at_last_gain_write = freq; radio_ctrl_impl::set_rx_gain(index, chan); } else { UHD_LOG_TRACE(unique_id(), "No change in index or band, skipped writing RX gain index: " << index); } return index; } void rhodium_radio_ctrl_impl::_identify_with_leds( double identify_duration ) { auto duration_ms = static_cast(identify_duration * 1000); auto end_time = std::chrono::steady_clock::now() + std::chrono::milliseconds(duration_ms); bool led_state = true; { std::lock_guard lock(_ant_mutex); while (std::chrono::steady_clock::now() < end_time) { auto atr = led_state ? (LED_RX | LED_RX2 | LED_TX) : 0; _gpio->set_atr_reg(gpio_atr::ATR_REG_IDLE, atr, RHODIUM_GPIO_MASK); led_state = !led_state; std::this_thread::sleep_for(std::chrono::milliseconds(500)); } } _update_atr(get_tx_antenna(0), TX_DIRECTION); _update_atr(get_rx_antenna(0), RX_DIRECTION); } void rhodium_radio_ctrl_impl::_update_atr( const std::string& ant, const direction_t dir ) { // This function updates sw10 based on the value of both antennas, so we // use a mutex to prevent other calls in this class instance from running // at the same time. std::lock_guard lock(_ant_mutex); UHD_LOG_TRACE(unique_id(), "Updating ATRs for " << ((dir == RX_DIRECTION) ? "RX" : "TX") << " to " << ant); const auto rx_ant = (dir == RX_DIRECTION) ? ant : get_rx_antenna(0); const auto tx_ant = (dir == TX_DIRECTION) ? ant : get_tx_antenna(0); const auto sw10_tx = _is_tx_lowband(get_tx_frequency(0)) ? SW10_FROMTXLOWBAND : SW10_FROMTXHIGHBAND; const uint32_t atr_idle = SW10_ISOLATION; const uint32_t atr_rx = [rx_ant]{ if (rx_ant == "TX/RX") { return SW10_TORX | LED_RX; } else if (rx_ant == "RX2") { return SW10_ISOLATION | LED_RX2; } else { return SW10_ISOLATION; } }(); const uint32_t atr_tx = (tx_ant == "TX/RX") ? (sw10_tx | LED_TX) : SW10_ISOLATION; const uint32_t atr_dx = [tx_ant, rx_ant, sw10_tx] { uint32_t sw10_return; if (tx_ant == "TX/RX") { // if both channels are set to TX/RX, TX will override sw10_return = sw10_tx | LED_TX; } else if (rx_ant == "TX/RX") { sw10_return = SW10_TORX | LED_RX; } else { sw10_return = SW10_ISOLATION; } sw10_return |= (rx_ant == "RX2") ? LED_RX2 : 0; return sw10_return; }(); _gpio->set_atr_reg(gpio_atr::ATR_REG_IDLE, atr_idle, RHODIUM_GPIO_MASK); _gpio->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, atr_rx, RHODIUM_GPIO_MASK); _gpio->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, atr_tx, RHODIUM_GPIO_MASK); _gpio->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX, atr_dx, RHODIUM_GPIO_MASK); UHD_LOG_TRACE(unique_id(), str(boost::format("Wrote ATR registers i:0x%02X, r:0x%02X, t:0x%02X, d:0x%02X") % atr_idle % atr_rx % atr_tx % atr_dx)); if (dir == RX_DIRECTION) { radio_ctrl_impl::set_rx_antenna(ant, 0); } else { radio_ctrl_impl::set_tx_antenna(ant, 0); } } void rhodium_radio_ctrl_impl::_update_corrections( const double freq, const direction_t dir, const bool enable) { const std::string fe_path_part = dir == RX_DIRECTION ? "rx_fe_corrections" : "tx_fe_corrections"; const fs_path fe_corr_path = _root_path / fe_path_part / 0; const fs_path dboard_path = fs_path("dboards") / _radio_slot; if (enable) { UHD_LOG_DEBUG(unique_id(), "Loading any available frontend corrections for " << ((dir == RX_DIRECTION) ? "RX" : "TX") << " at " << freq); if (dir == RX_DIRECTION) { apply_rx_fe_corrections(_tree, dboard_path, fe_corr_path, freq); } else { apply_tx_fe_corrections(_tree, dboard_path, fe_corr_path, freq); } } else { UHD_LOG_DEBUG(unique_id(), "Disabling frontend corrections for " << ((dir == RX_DIRECTION) ? "RX" : "TX")); if (dir == RX_DIRECTION) { _rx_fe_core->set_iq_balance(rx_frontend_core_3000::DEFAULT_IQ_BALANCE_VALUE); } else { _tx_fe_core->set_dc_offset(tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE); _tx_fe_core->set_iq_balance(tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE); } } } uhd::gain_range_t rhodium_radio_ctrl_impl::_get_gain_range(direction_t dir) { if (dir == RX_DIRECTION) { return gain_range_t(RX_MIN_GAIN, RX_MAX_GAIN, RX_GAIN_STEP); } else if (dir == TX_DIRECTION) { return gain_range_t(TX_MIN_GAIN, TX_MAX_GAIN, TX_GAIN_STEP); } else { UHD_THROW_INVALID_CODE_PATH(); } } bool rhodium_radio_ctrl_impl::_get_spur_dodging_enabled(uhd::direction_t dir) const { UHD_ASSERT_THROW(_tree->exists(get_arg_path(SPUR_DODGING_ARG_NAME) / "value")); auto block_value = _tree->access(get_arg_path(SPUR_DODGING_ARG_NAME) / "value").get(); auto dict = _get_tune_args(_tree, _radio_slot, dir); // get the current tune_arg for spur_dodging // if the tune_arg doesn't exist, use the radio block argument instead std::string spur_dodging_arg = dict.cast( SPUR_DODGING_ARG_NAME, block_value); if (spur_dodging_arg == "enabled") { UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_enabled returning enabled"); return true; } else if (spur_dodging_arg == "disabled") { UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_enabled returning disabled"); return false; } else { throw uhd::value_error( str(boost::format("Invalid spur_dodging argument: %s Valid options are [enabled, disabled]") % spur_dodging_arg)); } } double rhodium_radio_ctrl_impl::_get_spur_dodging_threshold(uhd::direction_t dir) const { UHD_ASSERT_THROW(_tree->exists(get_arg_path(SPUR_DODGING_THRESHOLD_ARG_NAME) / "value")); auto block_value = _tree->access(get_arg_path(SPUR_DODGING_THRESHOLD_ARG_NAME) / "value").get(); auto dict = _get_tune_args(_tree, _radio_slot, dir); // get the current tune_arg for spur_dodging_threshold // if the tune_arg doesn't exist, use the radio block argument instead auto threshold = dict.cast(SPUR_DODGING_THRESHOLD_ARG_NAME, block_value); UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_threshold returning " << threshold); return threshold; } bool rhodium_radio_ctrl_impl::_get_highband_spur_reduction_enabled(uhd::direction_t dir) const { UHD_ASSERT_THROW( _tree->exists(get_arg_path(HIGHBAND_SPUR_REDUCTION_ARG_NAME) / "value")); auto block_value = _tree ->access( get_arg_path(HIGHBAND_SPUR_REDUCTION_ARG_NAME) / "value") .get(); auto dict = _get_tune_args(_tree, _radio_slot, dir); // get the current tune_arg for highband_spur_reduction // if the tune_arg doesn't exist, use the radio block argument instead std::string highband_spur_reduction_arg = dict.cast(HIGHBAND_SPUR_REDUCTION_ARG_NAME, block_value); if (highband_spur_reduction_arg == "enabled") { UHD_LOG_TRACE(unique_id(), __func__ << " returning enabled"); return true; } else if (highband_spur_reduction_arg == "disabled") { UHD_LOG_TRACE(unique_id(), __func__ << " returning disabled"); return false; } else { throw uhd::value_error( str(boost::format("Invalid highband_spur_reduction argument: %s Valid " "options are [enabled, disabled]") % highband_spur_reduction_arg)); } } bool rhodium_radio_ctrl_impl::_get_timed_command_enabled() const { auto& prop = _tree->access(fs_path("time") / "cmd"); // if timed commands are never set, the property will be empty // if timed commands were set but cleared, time_spec will be set to 0.0 return !prop.empty() and prop.get() != time_spec_t(0.0); } size_t rhodium_radio_ctrl_impl::get_chan_from_dboard_fe( const std::string &fe, const direction_t /* dir */ ) { UHD_ASSERT_THROW(boost::lexical_cast(fe) == 0); return 0; } std::string rhodium_radio_ctrl_impl::get_dboard_fe_from_chan( const size_t chan, const direction_t /* dir */ ) { UHD_ASSERT_THROW(chan == 0); return "0"; } void rhodium_radio_ctrl_impl::set_rpc_client( uhd::rpc_client::sptr rpcc, const uhd::device_addr_t &block_args ) { _rpcc = rpcc; _block_args = block_args; // Get and verify the MCR before _init_peripherals, which will use this value // Note: MCR gets set during the init() call (prior to this), which takes // in arguments from the device args. So if block_args contains a // master_clock_rate key, then it should better be whatever the device is // configured to do. _master_clock_rate = _rpcc->request_with_token(_rpc_prefix + "get_master_clock_rate"); if (block_args.cast("master_clock_rate", _master_clock_rate) != _master_clock_rate) { throw uhd::runtime_error(str( boost::format("Master clock rate mismatch. Device returns %f MHz, " "but should have been %f MHz.") % (_master_clock_rate / 1e6) % (block_args.cast( "master_clock_rate", _master_clock_rate) / 1e6) )); } UHD_LOG_DEBUG(unique_id(), "Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz."); radio_ctrl_impl::set_rate(_master_clock_rate); UHD_LOG_TRACE(unique_id(), "Checking for existence of Rhodium DB in slot " << _radio_slot); const auto all_dboard_info = _rpcc->request>>("get_dboard_info"); // There is a bug that if only one DB is plugged into slot B the vector // will only have 1 element but not be correlated to slot B at all. // For now, we assume a 1 element array means the DB is in slot A. if (all_dboard_info.size() <= get_block_id().get_block_count()) { UHD_LOG_DEBUG(unique_id(), "No DB detected in slot " << _radio_slot); // Name and master clock rate are needed for RFNoC init, so set the // name now and let this function continue to set the MCR _tree->subtree(fs_path("dboards") / _radio_slot / "tx_frontends" / "0") ->create("name").set("Unknown"); _tree->subtree(fs_path("dboards") / _radio_slot / "rx_frontends" / "0") ->create("name").set("Unknown"); } else { _dboard_info = all_dboard_info.at(get_block_id().get_block_count()); UHD_LOG_DEBUG(unique_id(), "Rhodium DB detected in slot " << _radio_slot << ". Serial: " << _dboard_info.at("serial")); _init_defaults(); _init_peripherals(); _init_prop_tree(); if (block_args.has_key("identify")) { const std::string identify_val = block_args.get("identify"); double identify_duration = 0.0; try { identify_duration = std::stod(identify_val); if (!std::isnormal(identify_duration)) { identify_duration = DEFAULT_IDENTIFY_DURATION; } } catch (std::invalid_argument) { identify_duration = DEFAULT_IDENTIFY_DURATION; } UHD_LOG_INFO(unique_id(), "Running LED identification process for " << identify_duration << " seconds."); _identify_with_leds(identify_duration); } } } bool rhodium_radio_ctrl_impl::get_lo_lock_status( const direction_t dir ) const { return ((dir == RX_DIRECTION) or _tx_lo->get_lock_status()) and ((dir == TX_DIRECTION) or _rx_lo->get_lock_status()); } UHD_RFNOC_BLOCK_REGISTER(rhodium_radio_ctrl, "RhodiumRadio");