//
// Copyright 2010-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// TX IO Pins
#define HB_PA_OFF_TXIO (1 << 15) // 5GHz PA, 1 = off, 0 = on
#define LB_PA_OFF_TXIO (1 << 14) // 2.4GHz PA, 1 = off, 0 = on
#define ANTSEL_TX1_RX2_TXIO (1 << 13) // 1 = Ant 1 to TX, Ant 2 to RX
#define ANTSEL_TX2_RX1_TXIO (1 << 12) // 1 = Ant 2 to TX, Ant 1 to RX
#define TX_EN_TXIO (1 << 11) // 1 = TX on, 0 = TX off
#define AD9515DIV_TXIO (1 << 4) // 1 = Div by 3, 0 = Div by 2
#define TXIO_MASK (HB_PA_OFF_TXIO | LB_PA_OFF_TXIO | ANTSEL_TX1_RX2_TXIO | ANTSEL_TX2_RX1_TXIO | TX_EN_TXIO | AD9515DIV_TXIO)
// TX IO Functions
#define HB_PA_TXIO LB_PA_OFF_TXIO
#define LB_PA_TXIO HB_PA_OFF_TXIO
#define TX_ENB_TXIO TX_EN_TXIO
#define TX_DIS_TXIO (HB_PA_OFF_TXIO | LB_PA_OFF_TXIO)
#define AD9515DIV_3_TXIO AD9515DIV_TXIO
#define AD9515DIV_2_TXIO 0
// RX IO Pins
#define LOCKDET_RXIO (1 << 15) // This is an INPUT!!!
#define POWER_RXIO (1 << 14) // 1 = power on, 0 = shutdown
#define RX_EN_RXIO (1 << 13) // 1 = RX on, 0 = RX off
#define RX_HP_RXIO (1 << 12) // 0 = Fc set by rx_hpf, 1 = 600 KHz
#define RXIO_MASK (POWER_RXIO | RX_EN_RXIO | RX_HP_RXIO)
// RX IO Functions
#define POWER_UP_RXIO POWER_RXIO
#define POWER_DOWN_RXIO 0
#define RX_ENB_RXIO RX_EN_RXIO
#define RX_DIS_RXIO 0
#include "max2829_regs.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The XCVR 2450 constants
**********************************************************************/
static const freq_range_t xcvr_freq_range = list_of
(range_t(2.4e9, 2.5e9))
(range_t(4.9e9, 6.0e9))
;
//Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t xcvr_tx_bandwidth_range = list_of
(range_t(2.0*12e6))
(range_t(2.0*18e6))
(range_t(2.0*24e6))
;
//Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t xcvr_rx_bandwidth_range = list_of
(range_t(2.0*0.9*7.5e6, 2.0*1.1*7.5e6))
(range_t(2.0*0.9*9.5e6, 2.0*1.1*9.5e6))
(range_t(2.0*0.9*14e6, 2.0*1.1*14e6))
(range_t(2.0*0.9*18e6, 2.0*1.1*18e6))
;
static const std::vector xcvr_antennas = list_of("J1")("J2");
static const uhd::dict xcvr_tx_gain_ranges = map_list_of
("VGA", gain_range_t(0, 30, 0.5))
("BB", gain_range_t(0, 5, 1.5))
;
static const uhd::dict xcvr_rx_gain_ranges = map_list_of
("LNA", gain_range_t(list_of
(range_t(0))
(range_t(15))
(range_t(30.5))
))
("VGA", gain_range_t(0, 62, 2.0))
;
/***********************************************************************
* The XCVR 2450 dboard class
**********************************************************************/
class xcvr2450 : public xcvr_dboard_base{
public:
xcvr2450(ctor_args_t args);
virtual ~xcvr2450(void);
private:
double _lo_freq;
double _rx_bandwidth, _tx_bandwidth;
uhd::dict _tx_gains, _rx_gains;
std::string _tx_ant, _rx_ant;
int _ad9515div;
max2829_regs_t _max2829_regs;
double set_lo_freq(double target_freq);
double set_lo_freq_core(double target_freq);
void set_tx_ant(const std::string &ant);
void set_rx_ant(const std::string &ant);
double set_tx_gain(double gain, const std::string &name);
double set_rx_gain(double gain, const std::string &name);
double set_rx_bandwidth(double bandwidth);
double set_tx_bandwidth(double bandwidth);
void update_atr(void);
void spi_reset(void);
void send_reg(uint8_t addr){
uint32_t value = _max2829_regs.get_reg(addr);
UHD_LOGV(often) << boost::format(
"XCVR2450: send reg 0x%02x, value 0x%05x"
) % int(addr) % value << std::endl;
this->get_iface()->write_spi(
dboard_iface::UNIT_RX,
spi_config_t::EDGE_RISE,
value, 24
);
}
static bool is_highband(double freq){return freq > 3e9;}
/*!
* Get the lock detect status of the LO.
* \return sensor for locked
*/
sensor_value_t get_locked(void){
const bool locked = (this->get_iface()->read_gpio(dboard_iface::UNIT_RX) & LOCKDET_RXIO) != 0;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
/*!
* Read the RSSI from the aux adc
* \return the rssi sensor in dBm
*/
sensor_value_t get_rssi(void){
//*FIXME* RSSI depends on LNA Gain Setting (datasheet pg 16 top middle chart)
double max_power = 0.0;
switch(_max2829_regs.rx_lna_gain){
case 0:
case 1: max_power = 0; break;
case 2: max_power = -15; break;
case 3: max_power = -30.5; break;
}
//constants for the rssi calculation
static const double min_v = 2.5, max_v = 0.5;
static const double rssi_dyn_range = 60.0;
//calculate the rssi from the voltage
double voltage = this->get_iface()->read_aux_adc(dboard_iface::UNIT_RX, dboard_iface::AUX_ADC_B);
double rssi = max_power - rssi_dyn_range*(voltage - min_v)/(max_v - min_v);
return sensor_value_t("RSSI", rssi, "dBm");
}
};
/***********************************************************************
* Register the XCVR 2450 dboard
**********************************************************************/
static dboard_base::sptr make_xcvr2450(dboard_base::ctor_args_t args){
return dboard_base::sptr(new xcvr2450(args));
}
UHD_STATIC_BLOCK(reg_xcvr2450_dboard){
//register the factory function for the rx and tx dbids
dboard_manager::register_dboard(0x0061, 0x0060, &make_xcvr2450, "XCVR2450");
dboard_manager::register_dboard(0x0061, 0x0059, &make_xcvr2450, "XCVR2450 - r2.1");
}
/***********************************************************************
* Structors
**********************************************************************/
xcvr2450::xcvr2450(ctor_args_t args) : xcvr_dboard_base(args){
spi_reset(); //prepare the spi
_rx_bandwidth = 9.5e6;
_tx_bandwidth = 12.0e6;
//setup the misc max2829 registers
_max2829_regs.mimo_select = max2829_regs_t::MIMO_SELECT_MIMO;
_max2829_regs.band_sel_mimo = max2829_regs_t::BAND_SEL_MIMO_MIMO;
_max2829_regs.pll_cp_select = max2829_regs_t::PLL_CP_SELECT_4MA;
_max2829_regs.rssi_high_bw = max2829_regs_t::RSSI_HIGH_BW_6MHZ;
_max2829_regs.tx_lpf_coarse_adj = max2829_regs_t::TX_LPF_COARSE_ADJ_12MHZ;
_max2829_regs.rx_lpf_coarse_adj = max2829_regs_t::RX_LPF_COARSE_ADJ_9_5MHZ;
_max2829_regs.rx_lpf_fine_adj = max2829_regs_t::RX_LPF_FINE_ADJ_100;
_max2829_regs.rx_vga_gain_spi = max2829_regs_t::RX_VGA_GAIN_SPI_SPI;
_max2829_regs.rssi_output_range = max2829_regs_t::RSSI_OUTPUT_RANGE_HIGH;
_max2829_regs.rssi_op_mode = max2829_regs_t::RSSI_OP_MODE_ENABLED;
_max2829_regs.rssi_pin_fcn = max2829_regs_t::RSSI_PIN_FCN_RSSI;
_max2829_regs.rx_highpass = max2829_regs_t::RX_HIGHPASS_100HZ;
_max2829_regs.tx_vga_gain_spi = max2829_regs_t::TX_VGA_GAIN_SPI_SPI;
_max2829_regs.pa_driver_linearity = max2829_regs_t::PA_DRIVER_LINEARITY_78;
_max2829_regs.tx_vga_linearity = max2829_regs_t::TX_VGA_LINEARITY_78;
_max2829_regs.tx_upconv_linearity = max2829_regs_t::TX_UPCONV_LINEARITY_78;
//send initial register settings
for(uint8_t reg = 0x2; reg <= 0xC; reg++){
this->send_reg(reg);
}
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create("name")
.set("XCVR2450 RX");
this->get_rx_subtree()->create("sensors/lo_locked")
.set_publisher(boost::bind(&xcvr2450::get_locked, this));
this->get_rx_subtree()->create("sensors/rssi")
.set_publisher(boost::bind(&xcvr2450::get_rssi, this));
BOOST_FOREACH(const std::string &name, xcvr_rx_gain_ranges.keys()){
this->get_rx_subtree()->create("gains/"+name+"/value")
.set_coercer(boost::bind(&xcvr2450::set_rx_gain, this, _1, name))
.set(xcvr_rx_gain_ranges[name].start());
this->get_rx_subtree()->create("gains/"+name+"/range")
.set(xcvr_rx_gain_ranges[name]);
}
this->get_rx_subtree()->create("freq/value")
.set_coercer(boost::bind(&xcvr2450::set_lo_freq, this, _1))
.set(double(2.45e9));
this->get_rx_subtree()->create("freq/range")
.set(xcvr_freq_range);
this->get_rx_subtree()->create("antenna/value")
.add_coerced_subscriber(boost::bind(&xcvr2450::set_rx_ant, this, _1))
.set(xcvr_antennas.at(0));
this->get_rx_subtree()->create >("antenna/options")
.set(xcvr_antennas);
this->get_rx_subtree()->create("connection")
.set("IQ");
this->get_rx_subtree()->create("enabled")
.set(true); //always enabled
this->get_rx_subtree()->create("use_lo_offset")
.set(false);
this->get_rx_subtree()->create("bandwidth/value")
.set_coercer(boost::bind(&xcvr2450::set_rx_bandwidth, this, _1)) //complex bandpass bandwidth
.set(2.0*_rx_bandwidth); //_rx_bandwidth in lowpass, convert to complex bandpass
this->get_rx_subtree()->create("bandwidth/range")
.set(xcvr_rx_bandwidth_range);
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
this->get_tx_subtree()->create("name")
.set("XCVR2450 TX");
this->get_tx_subtree()->create("sensors/lo_locked")
.set_publisher(boost::bind(&xcvr2450::get_locked, this));
BOOST_FOREACH(const std::string &name, xcvr_tx_gain_ranges.keys()){
this->get_tx_subtree()->create("gains/"+name+"/value")
.set_coercer(boost::bind(&xcvr2450::set_tx_gain, this, _1, name))
.set(xcvr_tx_gain_ranges[name].start());
this->get_tx_subtree()->create("gains/"+name+"/range")
.set(xcvr_tx_gain_ranges[name]);
}
this->get_tx_subtree()->create("freq/value")
.set_coercer(boost::bind(&xcvr2450::set_lo_freq, this, _1))
.set(double(2.45e9));
this->get_tx_subtree()->create("freq/range")
.set(xcvr_freq_range);
this->get_tx_subtree()->create("antenna/value")
.add_coerced_subscriber(boost::bind(&xcvr2450::set_tx_ant, this, _1))
.set(xcvr_antennas.at(1));
this->get_tx_subtree()->create >("antenna/options")
.set(xcvr_antennas);
this->get_tx_subtree()->create("connection")
.set("QI");
this->get_tx_subtree()->create("enabled")
.set(true); //always enabled
this->get_tx_subtree()->create("use_lo_offset")
.set(false);
this->get_tx_subtree()->create("bandwidth/value")
.set_coercer(boost::bind(&xcvr2450::set_tx_bandwidth, this, _1)) //complex bandpass bandwidth
.set(2.0*_tx_bandwidth); //_tx_bandwidth in lowpass, convert to complex bandpass
this->get_tx_subtree()->create("bandwidth/range")
.set(xcvr_tx_bandwidth_range);
//enable only the clocks we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
//set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RXIO_MASK);
}
xcvr2450::~xcvr2450(void){
UHD_SAFE_CALL(spi_reset();)
}
void xcvr2450::spi_reset(void){
//spi reset mode: global enable = off, tx and rx enable = on
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, TX_ENB_TXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, RX_ENB_RXIO | POWER_DOWN_RXIO);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
//take it back out of spi reset mode and wait a bit
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, RX_DIS_RXIO | POWER_UP_RXIO);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
/***********************************************************************
* Update ATR regs which change with Antenna or Freq
**********************************************************************/
void xcvr2450::update_atr(void){
//calculate tx atr pins
int band_sel = (xcvr2450::is_highband(_lo_freq))? HB_PA_TXIO : LB_PA_TXIO;
int tx_ant_sel = (_tx_ant == "J1")? ANTSEL_TX1_RX2_TXIO : ANTSEL_TX2_RX1_TXIO;
int rx_ant_sel = (_rx_ant == "J2")? ANTSEL_TX1_RX2_TXIO : ANTSEL_TX2_RX1_TXIO;
int xx_ant_sel = tx_ant_sel; //Prefer the tx antenna selection for full duplex,
//due to the issue that USRP1 will take the value of full duplex for its TXATR.
int ad9515div = (_ad9515div == 3)? AD9515DIV_3_TXIO : AD9515DIV_2_TXIO;
//set the tx registers
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, band_sel | ad9515div | TX_DIS_TXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_RX_ONLY, band_sel | ad9515div | TX_DIS_TXIO | rx_ant_sel);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, band_sel | ad9515div | TX_ENB_TXIO | tx_ant_sel);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_FULL_DUPLEX, band_sel | ad9515div | TX_ENB_TXIO | xx_ant_sel);
//set the rx registers
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, POWER_UP_RXIO | RX_DIS_RXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, POWER_UP_RXIO | RX_ENB_RXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, POWER_UP_RXIO | RX_DIS_RXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_FULL_DUPLEX, POWER_UP_RXIO | RX_DIS_RXIO);
}
/***********************************************************************
* Tuning
**********************************************************************/
double xcvr2450::set_lo_freq(double target_freq){
//tune the LO and sleep a bit for lock
//if not locked, try some carrier offsets
double actual = 0.0;
for (double offset = 0.0; offset <= 3e6; offset+=1e6){
actual = this->set_lo_freq_core(target_freq + offset);
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
if (this->get_locked().to_bool()) break;
}
return actual;
}
double xcvr2450::set_lo_freq_core(double target_freq){
//clip the input to the range
target_freq = xcvr_freq_range.clip(target_freq);
//variables used in the calculation below
double scaler = xcvr2450::is_highband(target_freq)? (4.0/5.0) : (4.0/3.0);
double ref_freq = this->get_iface()->get_clock_rate(dboard_iface::UNIT_TX);
int R, intdiv = 131, fracdiv = 0;
//loop through values until we get a match
for(_ad9515div = 2; _ad9515div <= 3; _ad9515div++){
for(R = 1; R <= 7; R++){
double N = (target_freq*scaler*R*_ad9515div)/ref_freq;
intdiv = int(std::floor(N));
fracdiv = boost::math::iround((N - intdiv)*double(1 << 16));
//actual minimum is 128, but most chips seems to require higher to lock
if (intdiv < 131 or intdiv > 255) continue;
//constraints met: exit loop
goto done_loop;
}
} done_loop:
//calculate the actual freq from the values above
double N = double(intdiv) + double(fracdiv)/double(1 << 16);
_lo_freq = (N*ref_freq)/(scaler*R*_ad9515div);
UHD_LOGV(often)
<< boost::format("XCVR2450 tune:\n")
<< boost::format(" R=%d, N=%f, ad9515=%d, scaler=%f\n") % R % N % _ad9515div % scaler
<< boost::format(" Ref Freq=%fMHz\n") % (ref_freq/1e6)
<< boost::format(" Target Freq=%fMHz\n") % (target_freq/1e6)
<< boost::format(" Actual Freq=%fMHz\n") % (_lo_freq/1e6)
<< std::endl;
//high-high band or low-high band?
if(_lo_freq > (5.35e9 + 5.47e9)/2.0){
UHD_LOGV(often) << "XCVR2450 tune: Using high-high band" << std::endl;
_max2829_regs.band_select_802_11a = max2829_regs_t::BAND_SELECT_802_11A_5_47GHZ_TO_5_875GHZ;
}else{
UHD_LOGV(often) << "XCVR2450 tune: Using low-high band" << std::endl;
_max2829_regs.band_select_802_11a = max2829_regs_t::BAND_SELECT_802_11A_4_9GHZ_TO_5_35GHZ;
}
//new band select settings and ad9515 divider
this->update_atr();
const bool div_ext(this->get_tx_id() == 0x0059);
if (div_ext)
{
this->get_iface()->set_clock_rate(dboard_iface::UNIT_TX, ref_freq/_ad9515div);
}
else
{
this->get_iface()->set_clock_rate(dboard_iface::UNIT_TX, ref_freq);
}
//load new counters into registers
_max2829_regs.int_div_ratio_word = intdiv;
_max2829_regs.frac_div_ratio_lsb = fracdiv & 0x3;
_max2829_regs.frac_div_ratio_msb = fracdiv >> 2;
this->send_reg(0x3); //integer
this->send_reg(0x4); //fractional
//load the reference divider and band select into registers
//toggle the bandswitch from off to automatic (which really means start)
_max2829_regs.ref_divider = R;
_max2829_regs.band_select = (xcvr2450::is_highband(_lo_freq))?
max2829_regs_t::BAND_SELECT_5GHZ :
max2829_regs_t::BAND_SELECT_2_4GHZ ;
_max2829_regs.vco_bandswitch = max2829_regs_t::VCO_BANDSWITCH_DISABLE;
this->send_reg(0x5);
_max2829_regs.vco_bandswitch = max2829_regs_t::VCO_BANDSWITCH_AUTOMATIC;;
this->send_reg(0x5);
return _lo_freq;
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void xcvr2450::set_tx_ant(const std::string &ant){
assert_has(xcvr_antennas, ant, "xcvr antenna name");
_tx_ant = ant;
this->update_atr(); //sets the atr to the new antenna setting
}
void xcvr2450::set_rx_ant(const std::string &ant){
assert_has(xcvr_antennas, ant, "xcvr antenna name");
_rx_ant = ant;
this->update_atr(); //sets the atr to the new antenna setting
}
/***********************************************************************
* Gain Handling
**********************************************************************/
/*!
* Convert a requested gain for the tx vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 6 bit the register value
*/
static int gain_to_tx_vga_reg(double &gain){
//calculate the register value
int reg = uhd::clip(boost::math::iround(gain*60/30.0) + 3, 0, 63);
//calculate the actual gain value
if (reg < 4) gain = 0;
else if (reg < 48) gain = double(reg/2 - 1);
else gain = double(reg/2.0 - 1.5);
//return register value
return reg;
}
/*!
* Convert a requested gain for the tx bb into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return gain enum value
*/
static max2829_regs_t::tx_baseband_gain_t gain_to_tx_bb_reg(double &gain){
int reg = uhd::clip(boost::math::iround(gain*3/5.0), 0, 3);
switch(reg){
case 0:
gain = 0;
return max2829_regs_t::TX_BASEBAND_GAIN_0DB;
case 1:
gain = 2;
return max2829_regs_t::TX_BASEBAND_GAIN_2DB;
case 2:
gain = 3.5;
return max2829_regs_t::TX_BASEBAND_GAIN_3_5DB;
case 3:
gain = 5;
return max2829_regs_t::TX_BASEBAND_GAIN_5DB;
}
UHD_THROW_INVALID_CODE_PATH();
}
/*!
* Convert a requested gain for the rx vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 5 bit the register value
*/
static int gain_to_rx_vga_reg(double &gain){
int reg = uhd::clip(boost::math::iround(gain/2.0), 0, 31);
gain = double(reg*2);
return reg;
}
/*!
* Convert a requested gain for the rx lna into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 2 bit the register value
*/
static int gain_to_rx_lna_reg(double &gain){
int reg = uhd::clip(boost::math::iround(gain*2/30.5) + 1, 0, 3);
switch(reg){
case 0:
case 1: gain = 0; break;
case 2: gain = 15; break;
case 3: gain = 30.5; break;
}
return reg;
}
double xcvr2450::set_tx_gain(double gain, const std::string &name){
assert_has(xcvr_tx_gain_ranges.keys(), name, "xcvr tx gain name");
if (name == "VGA"){
_max2829_regs.tx_vga_gain = gain_to_tx_vga_reg(gain);
send_reg(0xC);
}
else if(name == "BB"){
_max2829_regs.tx_baseband_gain = gain_to_tx_bb_reg(gain);
send_reg(0x9);
}
else UHD_THROW_INVALID_CODE_PATH();
_tx_gains[name] = gain;
return gain;
}
double xcvr2450::set_rx_gain(double gain, const std::string &name){
assert_has(xcvr_rx_gain_ranges.keys(), name, "xcvr rx gain name");
if (name == "VGA"){
_max2829_regs.rx_vga_gain = gain_to_rx_vga_reg(gain);
send_reg(0xB);
}
else if(name == "LNA"){
_max2829_regs.rx_lna_gain = gain_to_rx_lna_reg(gain);
send_reg(0xB);
}
else UHD_THROW_INVALID_CODE_PATH();
_rx_gains[name] = gain;
return gain;
}
/***********************************************************************
* Bandwidth Handling
**********************************************************************/
static max2829_regs_t::tx_lpf_coarse_adj_t bandwidth_to_tx_lpf_coarse_reg(double &bandwidth){
int reg = uhd::clip(boost::math::iround((bandwidth-6.0e6)/6.0e6), 1, 3);
switch(reg){
case 1: // bandwidth < 15MHz
bandwidth = 12e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_12MHZ;
case 2: // 15MHz < bandwidth < 21MHz
bandwidth = 18e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_18MHZ;
case 3: // bandwidth > 21MHz
bandwidth = 24e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_24MHZ;
}
UHD_THROW_INVALID_CODE_PATH();
}
static max2829_regs_t::rx_lpf_fine_adj_t bandwidth_to_rx_lpf_fine_reg(double &bandwidth, double requested_bandwidth){
int reg = uhd::clip(boost::math::iround((requested_bandwidth/bandwidth)/0.05), 18, 22);
switch(reg){
case 18: // requested_bandwidth < 92.5%
bandwidth = 0.9 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_90;
case 19: // 92.5% < requested_bandwidth < 97.5%
bandwidth = 0.95 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_95;
case 20: // 97.5% < requested_bandwidth < 102.5%
bandwidth = 1.0 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_100;
case 21: // 102.5% < requested_bandwidth < 107.5%
bandwidth = 1.05 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_105;
case 22: // 107.5% < requested_bandwidth
bandwidth = 1.1 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_110;
}
UHD_THROW_INVALID_CODE_PATH();
}
static max2829_regs_t::rx_lpf_coarse_adj_t bandwidth_to_rx_lpf_coarse_reg(double &bandwidth){
int reg = uhd::clip(boost::math::iround((bandwidth-7.0e6)/1.0e6), 0, 11);
switch(reg){
case 0: // bandwidth < 7.5MHz
case 1: // 7.5MHz < bandwidth < 8.5MHz
bandwidth = 7.5e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_7_5MHZ;
case 2: // 8.5MHz < bandwidth < 9.5MHz
case 3: // 9.5MHz < bandwidth < 10.5MHz
case 4: // 10.5MHz < bandwidth < 11.5MHz
bandwidth = 9.5e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_9_5MHZ;
case 5: // 11.5MHz < bandwidth < 12.5MHz
case 6: // 12.5MHz < bandwidth < 13.5MHz
case 7: // 13.5MHz < bandwidth < 14.5MHz
case 8: // 14.5MHz < bandwidth < 15.5MHz
bandwidth = 14e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_14MHZ;
case 9: // 15.5MHz < bandwidth < 16.5MHz
case 10: // 16.5MHz < bandwidth < 17.5MHz
case 11: // 17.5MHz < bandwidth
bandwidth = 18e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_18MHZ;
}
UHD_THROW_INVALID_CODE_PATH();
}
double xcvr2450::set_rx_bandwidth(double bandwidth){
double requested_bandwidth = bandwidth;
//convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth/2.0;
//compute coarse low pass cutoff frequency setting
_max2829_regs.rx_lpf_coarse_adj = bandwidth_to_rx_lpf_coarse_reg(bandwidth);
//compute fine low pass cutoff frequency setting
_max2829_regs.rx_lpf_fine_adj = bandwidth_to_rx_lpf_fine_reg(bandwidth, requested_bandwidth);
//shadow bandwidth setting
_rx_bandwidth = bandwidth;
//update register
send_reg(0x7);
UHD_LOGV(often) << boost::format(
"XCVR2450 RX Bandwidth (lp_fc): %f Hz, coarse reg: %d, fine reg: %d"
) % _rx_bandwidth % (int(_max2829_regs.rx_lpf_coarse_adj)) % (int(_max2829_regs.rx_lpf_fine_adj)) << std::endl;
return 2.0*_rx_bandwidth;
}
double xcvr2450::set_tx_bandwidth(double bandwidth){
//convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth/2.0;
//compute coarse low pass cutoff frequency setting
_max2829_regs.tx_lpf_coarse_adj = bandwidth_to_tx_lpf_coarse_reg(bandwidth);
//shadow bandwidth setting
_tx_bandwidth = bandwidth;
//update register
send_reg(0x7);
UHD_LOGV(often) << boost::format(
"XCVR2450 TX Bandwidth (lp_fc): %f Hz, coarse reg: %d"
) % _tx_bandwidth % (int(_max2829_regs.tx_lpf_coarse_adj)) << std::endl;
//convert lowpass back to complex bandpass bandwidth
return 2.0*_tx_bandwidth;
}